

### RUSSIAN THISTLE POPULATION DYNAMICS AT A FORMER COAL MINE IN NORTHERN NEW MEXICO

A. Maier & J. White ASMR Annual Meeting, Laramie, Wyoming 2013

### **Objectives:**

Conduct literature review, evaluate treatment methods, and examine vegetative cover data to determine most effective Russian thistle (*Salsola tragus*) management strategy.



## Russian Thistle (Salsola tragus)

- Synonyms: *S. iberica*, *S. kali*.
- Annual, up to 3-4' tall, reproduces by seed
- Short leaves, stiff spine w/red or purple stripes, flowers w/pair of spiny bracts
- Seeds spread as plant dislocates from ground and scattered by wind as "tumbleweeds"
- Seed viability is rapidly lost in soil. Over 90% of the seed germinates or decays in the soil during the first year.





Source: Weeds of the West



### **Russian Thistle Distribution**



- Introduced to South Dakota in the 1870s via flaxseed from Russia (Crompton and Bassett 1985)
- Widely distributed in North America except in Southeastern U.S. (41 million ha, Young 1991)
- State noxious weed lists for 46 states

😿 Trihydro

Source: www.eFloras.org

### **Russian Thistle – Early Considerations**

W.S. Long (1941): Valuable forage for wildlife, more protein/carbohydrates than clover, as much mineral salts as alfalfa



Source: Jean Pawek



### Life Cycle

Step 1: Seedling establishment



Seed germination requires loose soil. A deep taproot allows this species to access deeper soil moisture, even as a seedling.



### Seed Dispersal

### Step 2: Plant Matures



Early leaves are linear and fleshy. Mature leaves are short and spiny, allowing for greater conservation of moisture.



## Seed Dispersal

### Step 3: Dislocation



- 66,000 seeds/plant (Stallings 1995),
- Up to 250k seeds/plant
- Wind driven, up to 4069 m in 6 weeks (2.5 mi) (Stallings 2012)
- Seed loss is 26% for stationary plants and 66% for tumbling plants (Stallings 2012)



## **Russian Thistle Control**

- 1. Herbicide and/or mechanical treatments (mowing, tillage, grazing, etc.)
- 2. "No action"
- 3. Integrated Weed Management/Reseeding Techniques

Herbicide (case studies):

- Adequate control obtained via broadcast of non-selective herbicides following harvest, using "weed-sensing" sprayer (Stallings et al. 1995)
- Light-activated, sensor-controlled (LASC) sprayer preferred over broadcaster sprayer (42% reduced cost), paraquat preferred over 2,4-D (90% vs. 75% control) (Young et al. 2008)
- Treatments that were superior to a bromacil standard (2 lb/acre) were: bromoxynil at 0.5 and 1 lb/acre, dicamba at 1 lb/acre, and 2,4-D amine at 3 lb/acre (Quimby et al. 1978)
- High undesirable germination with combination of tebuthiuron/ mechanical treatments + drought conditions (Morton 1991)



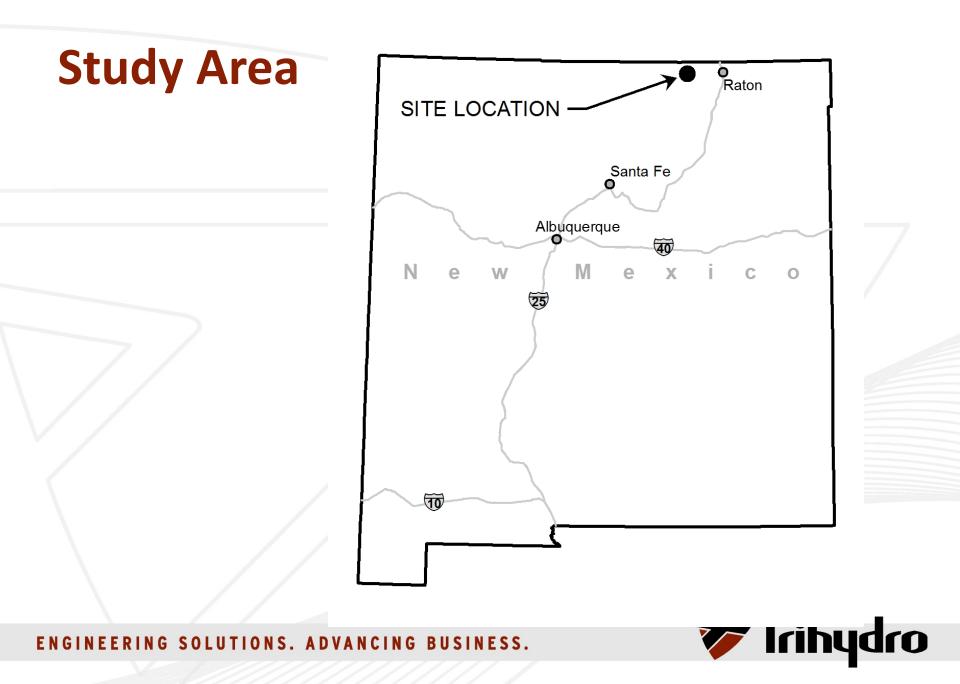
### **Russian Thistle Control**

- Herbicide and/or mechanical treatments (mowing, tillage, grazing, etc.)
- 2. "No action"
- 3. Integrated Weed Management/Reseeding Techniques

Mechanical /Fertilizer (case studies):

- Weed density highest with no-till, use alternative crop rotations (Anderson et al. 1988)
- Nitrogen fertilizer increases crop competitiveness in SW-WW-SUN with no-till, subsequently reducing weed density (Anderson et al. 1988)
- Russian thistle not influenced by nitrogen fertilizer application (Blackshaw & Brandt 2008)
- Exotics and natives did not differ in their response to nitrogen availability, poorest response was an exotic (Lowe et al. 2002)




### **Russian Thistle vs. Plant Succession**

Paschke et al. (2012): Plant community succession driven by initial colonizers following disturbance, initial colonizers strongly influence long-term plant community

- Seeding with early/mid-seral plants had higher number of exotics than planting with late-seral, perennial plants
- Mining bond release standards focus on maximum plant cover with desirables in years 1-4 following reclamation

Question: How can revegetation techniques (i.e. late-seral seed mix) be used to control Russian thistle (or other exotics) in light of rigid bond release standards?

😿 Trihydro



### **Study Area**



- Surface and Underground mining
- Reclamation occurs in 1-90 acre polygons (average size is 15 acres)
- Herbaceous plant community primarily characterized by warm season grasses and cool season forbs
- Russian thistle is widespread



### Seed Mix

- Blue grama
- Sideoats grama
- Western wheatgrass
- Arizona fescue
- Slender wheatgrass
- Alkali sacaton
- Sand dropseed
- Green needlegrass
- Lewis blue flax
- White yarrow
- Fringed sagebrush

- Antelope bitterbrush
- Rocky mountain penstemon
- Yellow prairie coneflower
- Purple prairie clover
- Fourwing saltbrush
- Rubber rabbitbrush
- Galleta grass
- Winterfat



### Reseeding









### Reseeding

Primary revegetation concerns are:

- 1) Reduce plant competition and prepare a good seedbed
- 2) Provide sufficient plant nutrients
- 3) Seed at proper time and depth
- 4) Enhance soil moisture through mulching and irrigation





### **Revegetation Schedule**

|                            |         | Week     | * of Mon | th of   |         |         |         |         |
|----------------------------|---------|----------|----------|---------|---------|---------|---------|---------|
| Procedure                  | March   | April    | May      | June    | July    | Aug.    | Sept.   | Oct.    |
| Topdress+                  | 1,2,3,4 | 1,2,3,4  | 1,2,3,4  | 1,2,3,4 | 1,2,3,4 | 1,2,3,4 | 1,2,3,4 | 1,2,3,4 |
| Disc <sup>o</sup>          | 1,2,3,4 | 1,2,3,4  | 1,2,3,4  | 1,2,3,4 |         |         |         |         |
| Fertilize                  |         | 2,3,4    | 1,2,3,4  | 1,2,3,4 |         |         |         |         |
| Seed                       |         | 3,4      | 1,2,3,4  | 1,2,3,4 | 1,2     |         |         |         |
| Mulch                      |         | 3,4      | 1,2,3,4  | 1,2,3,4 | 1,2     |         |         |         |
| Tack Mulch                 |         | 3,4      | 1,2,3,4  | 1,2,3,4 | 1,2     |         |         |         |
| Fertilize                  |         | 1,2,3,4  | 1,2,3,4  |         |         |         |         |         |
| Irrigate<br>(If necessary) |         | 1,2,3,4, | 1,2,3,4  | 1,2,3,4 | 1,2,3,4 |         |         |         |

\* 1 designates first week of the month, 2 designates second week of month, etc. <sup>+</sup> and month of the year.

o Conduct at times when soil is friable.



### **NM MMD Vegetation Standards**

Revegetation success standards for post-mining land uses designated for:

- 1. Croplands
- 2. Developed water resources
- 3. Fish and wildlife habitat\*
- 4. Forest land, recreation land, and shelterbelts
- 5. Grazing land
- 6. Industrial/commercial land
- 7. Pasture land or land occasionally cut for hay
- 8. Residential

Vegetation standards for above categories based on either a technical standard or comparison with reference area



### **NM MMD Vegetation Standards**

"Much of the ecological theory that went into developing the SMCRA and state regulations remains centered around Clements' views (Clements 1916, Barbour *et al.* 1987) on the climax community."

"Drastically disturbed lands in the arid southwest are not likely to develop to a climax community during the ten year bond period and therefore are not entirely comparable to reference areas or premine conditions."

"Friedel (1991) and others (Laycock 1991, Westoby *et al.* 1989) have suggested that succession may not produce a single climax vegetation type, but rather multiple steady states -- many of which will ultimately depart from the climax vegetation type."



### **Development of Technical Standard**

- 5-years of baseline, pre-mining plant cover, shrub density, and plant diversity
- Each plant community type of the mine must be represented





### Development of Technical Standard for Phase III Bond Release

### <u>Cover</u>:

13% plant cover, with a minimum of 6 perennial species (4 grasses, 2 forbs)

**Diversity Standard for herbaceous species:** 

- 4 dominant grass, minimum of 5%, maximum of 70% relative cover
- 2 dominant forbs, minimum of 1%, maximum of 70% relative cover
- Shrub Density Standard:
- 436 shrubs per acre

Diversity Standard for shrub species:

 3 shrub species, minimum of 5%, maximum of 90% relative cover

😿 Trihydro

### Methods

- Point-intercept sampling was completed at 0.5-meter intervals along 50-meter transects
- Data were collected in 2009, 2010, and 2012
- Sample size (N) = 265 sample locations over 3 sampling years
- At each 0.5-meter interval along the transect, the intercepted location was recorded as the following:
  - Plant species identity
  - Bareground
  - Rock
  - Litter





### Results

#### Relative % cover 10 Years Post Mining

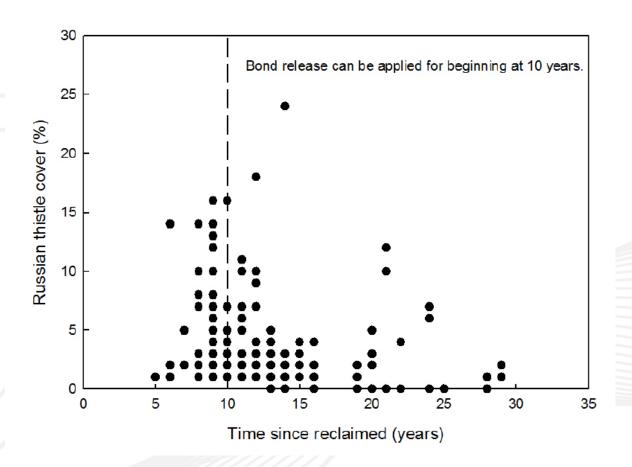

| GRASSES               |      | FORBS                |     | <u>SHRUBS</u>          |      |
|-----------------------|------|----------------------|-----|------------------------|------|
| James' galletta       | 10.7 | Russian thistle      | 5.5 | Rabbitbrush            | 16.5 |
| Western wheatgrass    | 10.5 | Western tansymustard | 2.4 | Fringed sage           | 11.2 |
| Blue grama            | 7.3  | White sagebrush      | 1.2 | Winterfat              | 10.3 |
| Bluebunch wheatgrass  | 2.9  | Prairie coneflower   | <1% | Fourwing saltbush      | 3.1  |
| Tumblegrass           | 2.1  | Thymeleaf sandmat    | <1% | Broom snakeweed        | 2.9  |
| Alkali sacaton        | 2.0  | Curlycup gumweed     | <1% | Woods rose             | 1.2  |
| Prairie junegrass     | 1.1  | Yellow sweetclover   | <1% | Utah serviceberry      | <1%  |
| Reed canarygrass      | <1%  | Common sunflower     | <1% | Yucca                  | <1%  |
| Sideoats grama        | <1%  | Cuman ragweed        | <1% | Wavyleaf oak           | <1%  |
| Thickspike wheatgrass | <1%  | Aster species        | <1% | Rocky Mountain juniper | <1%  |





### Results

- Total plant cover exceeds 13% vegetation standard
- Average species richness per transect
  = 10 (data not shown)
- Total annual precipitation was below average in all sampling years
- As drought intensifies, Russian thistle cover appears to increase






### Results

Taking a longer term perspective on Russian thistle cover dynamics....

- Russian thistle cover peaks at approximately 8-10 years postreclamation and then decreases.
- By years 20-30, Russian thistle cover is generally < 5%.</li>





### Conclusions

Management of Russian thistle in reclaimed areas requires:

- 1) a longer-term perspective
- 2) acceptance of this species' temporary abundance during drought
- 3) use of mid- to late-seral seed mix
- 4) adaptive management strategies
- 5) understanding of ecological processes
- 6) collaborative regulatory framework
- 7) monitoring and data collection
- 8) re-evaluation



# **Questions?**