

Iron Oxide Accumulation Profiling Within the Initial Oxidation Unit of a Passive Treatment System

Leah Oxenford American Society of Mining and Reclamation National Meeting, Lexington, KY 2015

Oxidative Unit = C1 + C2

C2 N/S

C4 N/S

C5 N/S

E E

C6

11

-----Full System = C1 – C6

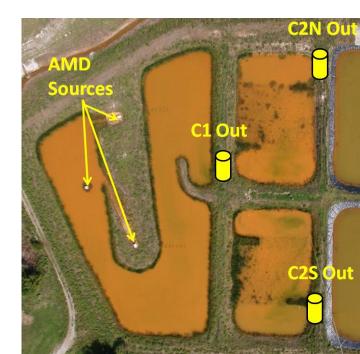
Average AMD Water Quality Properties

n= 40 2004-2008 pre system construction

Component	Concentration
Iron	191.0 ± 10 mg/L
Zinc	9.65 ± 1.0 mg/L
Manganese	1.60 ± 0.1 mg/L
Lead	62 ± 13 µg/L
Cadmium	15 ± 5 µg/L

- Q varies between 400-700 L\min annually
- Influent pH = 5.95 ±0.06
- Net Alkaline
 (Alkalinity 393 ± 13 mg\L CaCO₃)
- Average iron removal rate = 22 g/m²/day

Average Iron Removal Performance of Oxidative Unit


Effluent	% Total Iron	[Dissolved Fe] in	[Particulate Fe] in
Discharge	Removal	Effluent (n=13)	Effluent (n=13)
Cell 1	81.6%	23.380 ppm (72.4%)	8.904 ppm (27.6%)
Oxidative	96.0%	5.180 ppm	1.851 ppm
Unit		(73.7%)	(26.3%)
System	99.7%	0.129 ppm (25.9%)	0.369 ppm (74.1%)

Iron Accumulation in Passive Treatment Systems

- Oxidative system units are designed for:
 - Removal (dissolved Fe²⁺ to particulate FeOOH) via oxidation and hydrolysis reactions.
 - Transport of Suspended (settling of FeOOH solids) within the cell, retention within the cell.
 - Storage (settled FeOOH solids mineralize) accumulated solids manifest bulk properties.

Scope of Project

- Interest in iron oxide accumulation profile with respect to total retained solids:
 - Transport out of the oxidative unit
 - Spatial distribution
 - Accumulation volume
 - Physical and chemical characteristics

- Develop methods for profiling iron oxide accumulation in a surface flow wetland of a passive treatment system, with applications to the preliminary iron oxidation pond
 - Sampling
 - Field measurements
 - Transport / Processing
 - Analysis

Focus on Long Term Performance

- Solids Accumulation
 - Impaired unit performance via decrease in unit volume (decrease in HRT) + elevated water levels.
- Physical and Chemical Properties
 - Characterization for removal, recovery, and potential commercial applications for iron oxides

Sample Collection and Transport

Method Development Challenges

Sample Processing and Characterization

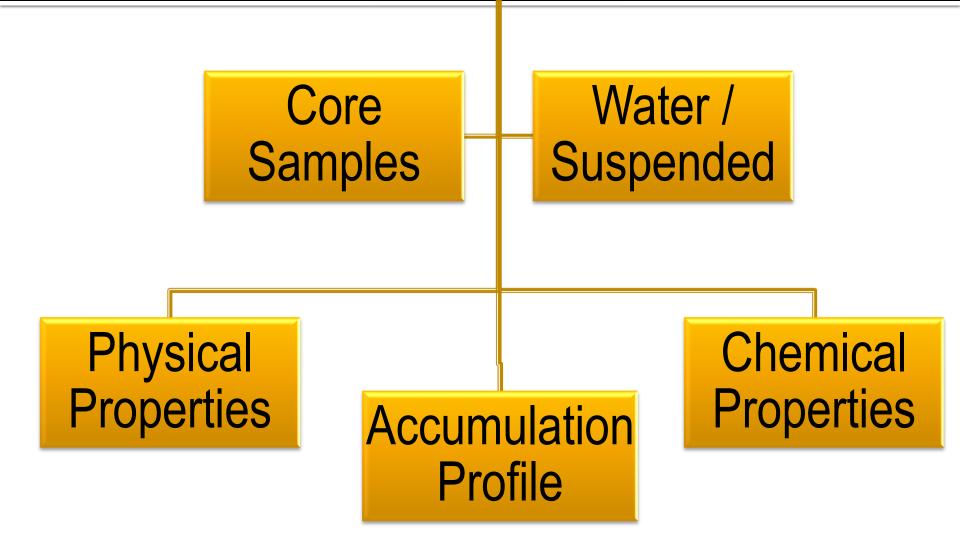
Sampling Challenges

Sampling Solutions

Sample Collection Methods

CORE SAMPLES

- Vertically sink a clear, acrylic pipe through the solids into the compacted clay.
- Cap both ends of the pipe and measure core depths immediately.
- YSI data and water samples collected


Sample Processing

 Solids collected from the top and the bottom of the core via aspiration.

 Samples represent the oldest material and the newest material

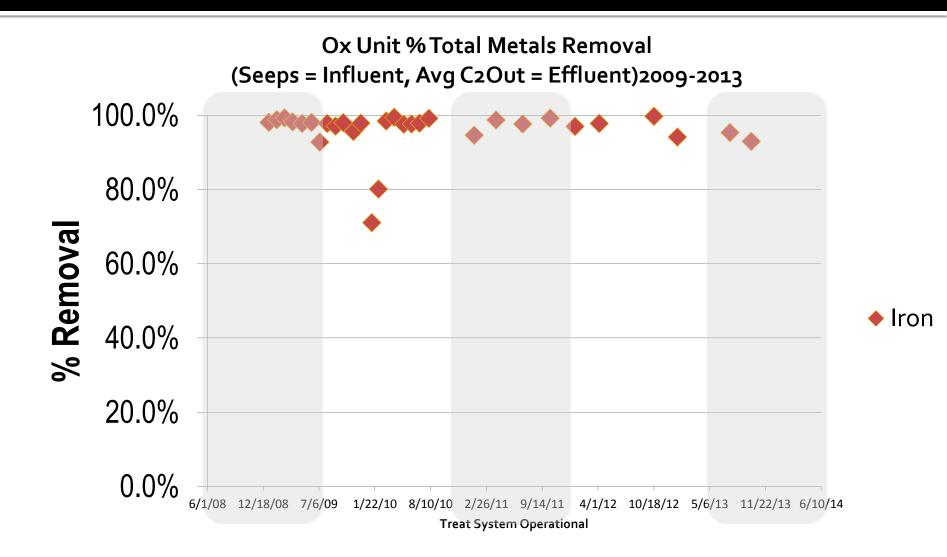
Accumulation

Solids gradient observed along design flow path for surface flow wetland.

- Greatest accumulation in first deep water zone
- Iron oxide accumulation in all zones

Specific Conductance (mS/cm)

- Spatial distribution patterns observed for:
 - pH
 - Specific conductance
 - Salinity
 - Total dissolved solids
- Supports core sample data for iron removal


Conclusions of Accumulation Profile

- Solids gradient observed along design flow path for surface flow wetland.
 - Greatest accumulation in first deep water zone
 - Iron oxide accumulation in all zones
- Heterogeneity in solids accumulation
 - Greater resolution achieved via more data points
 - Greater resolution of GIS imagery

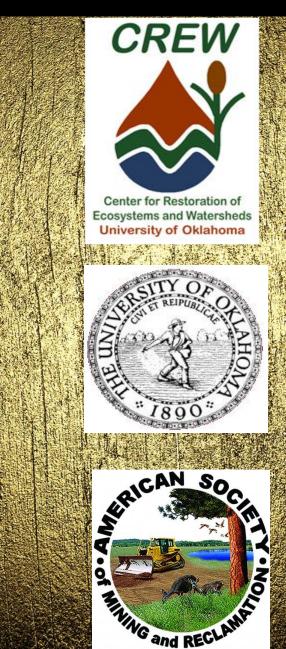
Impact on Cell Function

- Deep water zone design depth = 153 cm
 Max accumulation = 39 cm
- Loss of Depth_{max} = 24% over six years
- Accumulation in planted zone observed but not impacting plant growth / dev
 - high water levels and muskrats reduce plant coverage

Oxidative Unit Iron Removal

What's Next?

- Characterization of Collected Solids
- Expand scope to parallel SF wetland for comparison
- Expand scope to preliminary iron oxidation pond.


Acknowledgements

Dr. Robert Nairn (advisor)

CREW Staff and Team Center for the restoration of ecosystems and watersheds

University of Oklahoma

ASMR American Society of Mining and Reclamation

Physical Properties

Test	Method	Purpose
Raman Microscopy	Renishaw InVia Raman microscope	Mineral phase identification, transformation gradients
Specific Surface Area	Nitrogen Gas Adsorption (BET method)	Surface area and pore size
Particle size and morphology	SEM microscopy via AuPd sputter coating	Size and particle shapes, gradients
Particle size Distribution	Sequential sieving, MATLAB sieve analysis 5, laser diffraction particle analyzer	particle size distribution and classification
Particle Density	ASTM D5550 - Specific Gravity of Soil Solids by Gas Pycnometer	Particle density (dry) Particle density (wet)
Color Classification	Size selected powders, Munsell Color Scale	Dry bulk powder value, hue, chroma
Organic Matter Content	weight loss on ignition (LOI)	% Composition of organic material
Water Content	weight loss via drying at 105°C)	% Composition of water

Chemical Properties

Test	Method	Purpose
Solids Metal Content (Fe, Pb, Zn, Cd, As)	EPA 3051a; EPA 6010 (2009) Solids Acid Digestion Percent composition of trace metals (w/w) per unit mass of solids (MARS, ICP-OES)	Verification of trace metal removal observed in water quality data
% Crystallinity	Acid Oxalate Extractions (AOE)	% Crystallinity, Gradients