Evaluating the Impact of Na-SO₄²⁻ -Dominated Ionic Strength on Trace Metal Removal in Vertical Flow Bioreactors

J.A. LaBar and R.W. Nairn

University of Oklahoma School of Civil Engineering and Environmental Science

32nd Annual Meeting of the American Society of Mining and Reclamation June 7-11, 2015

- Background
- Methods
- Results
- Conclusions

- Typical mine water
 - Elevated iron, trace metals, and sulfate
 - Often acidic (pH < 4.5)</p>
- Passive treatment to treat mine water
 - Anoxic limestone drains generate alkalinity/neutralize acidity
 - Oxidation ponds precipitate iron
 - Vertical flow bioreactors may remove trace metals
 - In addition to generating alkalinity/neutralizing acidity

- Vertical flow bioreactors (VFBR)
 - Force water vertically through organic substrate
 - May overlay limestone layer or have limestone mixed throughout
 - Create anoxic, reducing conditions
 - Promote bacterial sulfate reduction and limestone dissolution
 - Remove divalent trace metals as insoluble sulfide minerals and increase pH

- Sulfide precipitation not only removal mechanism
 Sorption, carbonates, complexation with OM
- Factors impacting trace metal removal/VFBR performance
 - pH, ORP, temperature, HRT, substrate
 - Ionic strength?
 - Impacts solubility of carbonates and sulfides
 - Increase in I generally correlates to *increase* in solubility
 - Impacts sorption capacity
 - Increase in I generally correlates to *decrease* in sorption

- Ionic strength of mine water varies a great deal – <0.01 M to 0.75 M
- Commonly dominated by sulfate anion and various cations (Ca, Mg, Fe)
- Sodium may occasionally be dominant cation

 Geologic conditions or hydraulic connections to natural
 - gas or oil wells
- Does this impact trace metal removal in VFBR?

Methods

- Paired comparison
 - -Two sets of columns
 - Spent mushroom compost
 - Same trace metals (Cd, Mn, Ni, Pb, Zn) concentrations
 - Different ionic strengths
 - 10⁻³ M vs. 10⁻¹ M (LOW vs. HIGH)
 - Na-SO₄²⁻ dominated
 - Three replicates in each set

Methods

- Average HRT = 72 hours
- Sampled effluent biweekly
 - 100 pore volumes
- DO, ORP, pH, conductivity, alkalinity
- Total and dissolved metals
 - Cd, Mn, Ni, Pb, Zn
 - Ca, Mg, Na
- Sulfate and sulfide
- SRB presence/abundance

Results

- Initial flush of cations (Ca, K, Mg, Na)
- Removal of dissolved oxygen
 - Establishment of reducing conditions

- Establishment of bacterial community
 - Growth in inoculated media
 - Removal of sulfate
 - Production of sulfide

- Increase in pH and alkalinity
 - Dissolution of gypsum in substrate
 - Bacterial sulfate reduction

Mean Water Quality Data

Parameter	LOW I		HIGH I	
	IN	OUT	IN	OUT
T (°C)	21.1	20.6	20.9	20.6
рН	6.3	7.4	5.9	7.6
DO (mg/L)	8.1	0.2	8.3	0.1
ORP (mV)	214	-259	179	-314
Conductivity (mS/cm)	0.3	0.6	4.96	4.88
Alkalinity (mg/L as CaCO ₃)	5.7	171	3.2	255
Sodium (mg/L)	15.8	17.1	760	780
Sulfide (mg/L)	-	20.2	-	38.8
Sulfate (mg/L)	104	58	1827	1471

Total Cadmium

Total Cadmium

Total Manganese

Total Manganese

Total Nickel

Total Nickel

Total Lead

Total Lead

Total Zinc

Total Zinc

Results

- Summary
 - Both sets of reactors removed >75% Cd, Ni, Pb, Zn
 - Significant difference (p<0.05) in mean effluent concentrations of Cd, Mn, Ni, Pb, and Zn
 - Lower concentrations of Mn and Pb in LOW
 - Lower concentrations of Cd and Zn in HIGH
 - Lower concentrations of Ni in HIGH at beginning and LOW at end

Results

- Mean sulfate removal rate was greater in HIGH than LOW
 - 691 mmol/m³·d vs. 81 mmol/m³·d
- Sulfate removal rate decreased over time in HIGH
 - Initial removal rate in HIGH ≈1100 mmol/m³·d
 - Mean removal rate in HIGH in last four sampling events
 ≈375 mmol/m³·d
 - Sulfide production continued as before

Conclusions

- Significant differences (p<0.05) in removal rates for Cd, Mn, Ni, Pb, Zn
- Significant trends over time
 - -LOW
 - Ni: 67.3 mg/m³·d 86.4 mg/m³·d
 - Pb: 87.8 mg/m³·d 77.5 mg/m³·d
 - HIGH
 - Ni: 68.2 mg/m³·d 76.5 mg/m³·d
 - Mn: 18.4 mg/m³·d -15.1 mg/m³·d
- May indicate a shift in removal mechanisms

Conclusions

- Increased ionic strength does not have a consistent impact on divalent trace metal removal in VFBR
 - Positive impact for Cd, Pb, Zn
 - Negative impact for Mn, Ni
- Differences in removal rates likely due to effects on removal mechanisms
 - Exploring sorption, complexation, carbonate formation, sulfide precipitation
 - Sequential extractions, AVS/SEM, mineralogy, modeling

Thank You

Questions?

Center for Restoration of Ecosystems and Watersheds University of Oklahoma