Native Tree Survival and Herbaceous Establishment on an Experimentally Reclaimed Appalachian Coal Mine

S.C. Koropchak, C.E. Zipper, J.A. Burger and D. M. Evans Virginia Tech, Blacksburg, VA

30th Annual Meeting of the American Society of Mining & Reclamation, Laramie, WY, Reclamation Across Industries, June 1 – 7, 2013

West Virginia Coal Production

 ~8.5 % of US coal production (GAO 2009)

West Virginia Geologic and Economic Survey 2012

West Virginia Coal Production

Braxton

ummersville

Vicholas

Fayetteville

Favette

Beckley

Webster

Webster Springs

SOUTHERN COAL COUNTIES WEST VIRGINIA

Coal Counties-4,271,649 Acres Surface Mines-255,722 Acres Raleigh Wyomingi Pinevillen

Kanawha Charleston

Welch

McDowell

Madison

Logan

Mingo

Boone

West Virginia Highlands Conservancy, WVDEP, USGS 2008

Coal Surface Mine Reclamation

- Reclamation goals: To reestablish economically and ecologically valuable land cover
 - Can be achieved with reforestation
- Methods to achieve reforestation known as the Forestry Reclamation Approach (FRA) (Burger et al. 2005)

Forestry Reclamation Approach

- 1) 4 ft of rooting medium: topsoil, brown sandstone, or best available
- 2) Loosely grade material during placement
 - Minimize compaction to allow tree roots to grow
- 3) Tree compatible herbaceous groundcover
 Hold on to soil but don't compete with tree saplings
- 4) Plant mix of trees including early succession species for value to wildlife and soil stabilization (e.g. dogwood) and commercially valuable crop species (e.g. oaks)
- 5) Use proper tree planting techniques
 - Store trees properly, keep roots moist before planting, plant to appropriate depth, etc.

Substrate Selection

- Evidence that native salvaged topsoil and/or brown (weathered) rocks can be beneficial to the success of a reclamation (Skousen et al. 2011)
 - Better quality planting media for trees
 - Topsoil serves as a source of native forest understory plant propagules (e.g. seeds, rhizomes)

Seeding Treatment

- Evidence that even tree-compatible species have been found to persist and compete with trees
- Tree survival and growth improve as competition from groundcover decreases (Fields-Johnson et al. 2012)
- No known studies comparing an unseeded treatment with tree-compatible seeding treatment

Main Questions

- How does seeding an herbaceous cover crop affect tree survival after one growing season (GS)?
- 2) How do various substrates affect the survival of planted trees after one GS?
- 3) How does seeding an herbaceous cover crop affect the understory community after one GS?
- 4) How do various substrates affect the understory community after one GS?

Four substrates across a weathering gradient

Seeding Prescription

- Seeded plots: mix of tree-compatible herbaceous species
 - Perennial rye, Timothy grass, Annual rye, Birdsfoot trefoil, white clover
- Unseeded plots: no seed
- All plots: 19-19-19 N-P-K fertilizer, mulch

Tree Planting Prescription

Succession	Species	Trees/hectare
Stage		
Early	Sugar Maple (SM)	247
	Black Cherry (BC)	247
	Tulip Poplar (TP)	124
	Hawthorn (H)	62
	Eastern Redbud (RB)	62
	Gray Dogwood (GD)	62
	Eastern White Pine (EWP)	62
Late	White Oak (WO)	247
	Northern Red Oak (RO)	247
	Chestnut Oak (CO)	247
	Shagbark Hickory (SH)	124

Vegetation Sampling Methods

- Substrate plots = 0.4 ha
 - Seeded/unseeded subplots
 = 0.2 ha
- Tree sampling plots
 1/50 ha
- Herbaceous sampling plots
 - $-1 m^{2}$

Data Collection

- Trees
 - Height, survival, basal diameter
- Herbaceous community
 - All plants and their percent covers recorded
 - Total percent cover
 - Volunteer (unplanted) and total (planted + unplanted) species richness
 - Diversity
- Substrate characterization
 - Structural (e.g. coarse fragment content) and chemical properties (e.g. pH, organic matter)

Results: First Growing Season

Tree Survival

Total Herbaceous Cover

Total Species Richness

Substrate treatment

Volunteer Species Richness

Soil treatment

Diversity (H')

Substrate treatment

Substrate Treatment Effects

- No observed differences (yet) in tree survival among substrate treatments
 - Environmental factors mask effects of substrate?
 - Species differences: poor tree stocks?
- Richness highest in substrates at ends of weathering gradient (gray sandstone and salvaged soil)
 - Higher proportion of native species in soil

• Diversity (measure of richness and evenness) highest in salvaged soil treatment

Seeding Treatment Effects

- Tree survival higher in unseeded treatment
 Competition for resources? "Lost" trees?
- Cover and total richness higher in seeded treatment
 - Seeded plots include a base suite of species
- Volunteer richness higher in unseeded treatment
 - All species in unseeded treatment are volunteers
 - More space available for volunteers to establish

Main Conclusions

- Differences in tree survival and herbaceous community present after one growing season
- Differences expected to become more pronounced in future growing seasons
 - Transplant stress no longer a factor
 - Influx of additional propagules
- Future research essential to understand the importance of substrate selection and seeding prescription in rebuilding of forest communities

Proposed Future Work

• Quantify volunteer tree establishment

• Perform 3D scan of site to assess site topography and quantify gully erosion

• Gain at least one more year of data to better understand treatment effects

Acknowledgements

- Danny Robison, Luke O'Neal, Will Harless and others from Apogee Coal/Patriot Coal
 – Site setup/logistics
- Williams Forestry & Associates, LLC
 Tree planting
- Dan Evans, Melanie Letalik, Pat Donovan
 Data collection, GIS data manipulation