

ADVANCEMENTS IN GEOMORPHIC RECLAMATION DESIGN APPROACH

Harold Hutson, P.E., P.G. – Project Manager Robert Thoman, P.E. – Project Engineer 1130 Major Ave. Riverton, Wyoming 82501 307.857.3079 brs@bresnan.net

Wyoming Abandoned Mine Land Project 17 H-2 Lionkol Mining District Sweetwater County, Wyoming

Lionkol Coal Mining District

Description of Project Area

 Underground Mine Portals, Shafts, and Subsidence

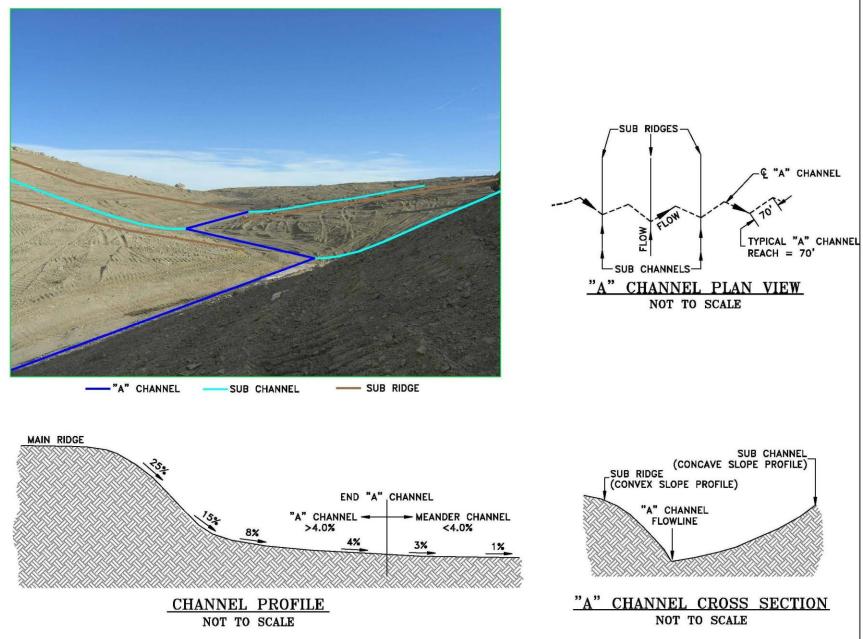
•Four Open Pit Mine Complexes

•320 Acre Disturbance Total

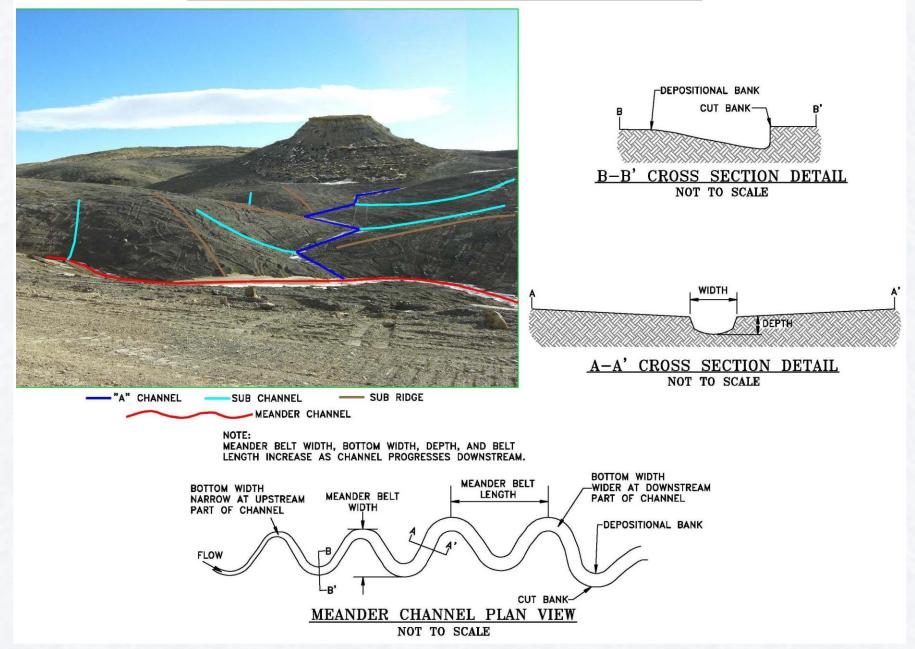
•5 Miles of Degraded Channels

•NRHP Eligible Cultural Sites and Historic Artifacts

•High Public Use Area


Reclamation Challenges Arid High Desert Environment •8.6" Average Annual Precip Incl. Snow •Elevation Ranging from 6330' to 7000' Sparse Vegetation, Poor Soils Steep Bedrock Controlled Topography •Natural Erosive Environment •Flashy High Intensity Storm Events

Geomorphic Reclamation Utilizing Natural Regrade Software •Mimics natural soft sediment topography Diverse sustainable landform Variable slopes with convex to concave profiles •Meandering channels to reduce gradient and improve stability •Small basins and dissection to minimize Q and vary time of concentration


Advantages of Geomorphic Reclamation

 Aesthetically pleasing, sustainable landform
 Increased snow capture
 Anticipated vegetative diversity
 Increased habitat value

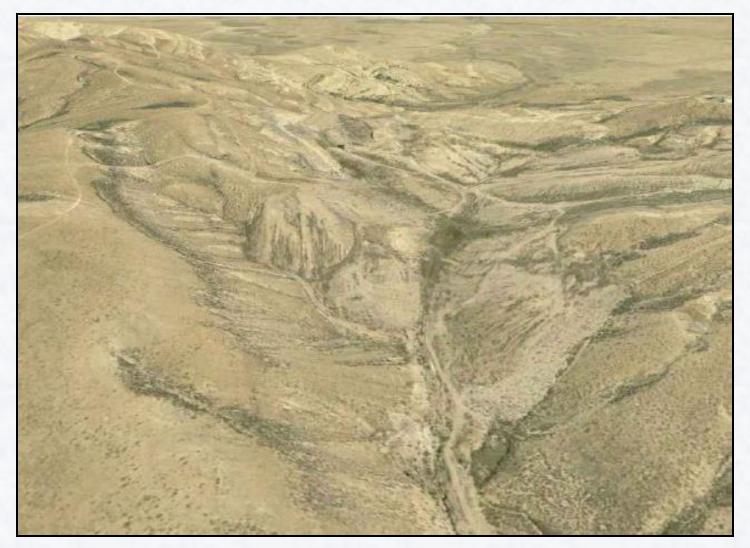
"A" CHANNEL DETAILS

MEANDER CHANNEL DETAILS

Definitions Bankfull – channel flow condition approximating 2 year frequency or 0.4" in 1 hour for this project. Channel bottom based upon conveyance of this event. •Flood Prone - flow condition approximating 50 year frequency or 1.5" in 1 hour for this project. Shields Shear Stress – A measure of erosive force based on tractive shear to initiate particle motion.

Construction Phases

- •17H-2B, Reliance No. 11 North and South Pits – Geomorphic Mixed with Traditional Rec.
- •17H-2B-II, Reliance No. 3 and Lionkol Pits
- Re-constructed Pre-Mine Configuration
- •17H-2B-III, Lionkol Drainage
- Large Channel Reconstruction with Empirical Runoff Estimation
- •17H-2B-IV, Lionkol West


- Channel Reconstruction and Performance Evaluation

AML 17H-2B Project Details *Reliance No. 11 North and South Pits Project*

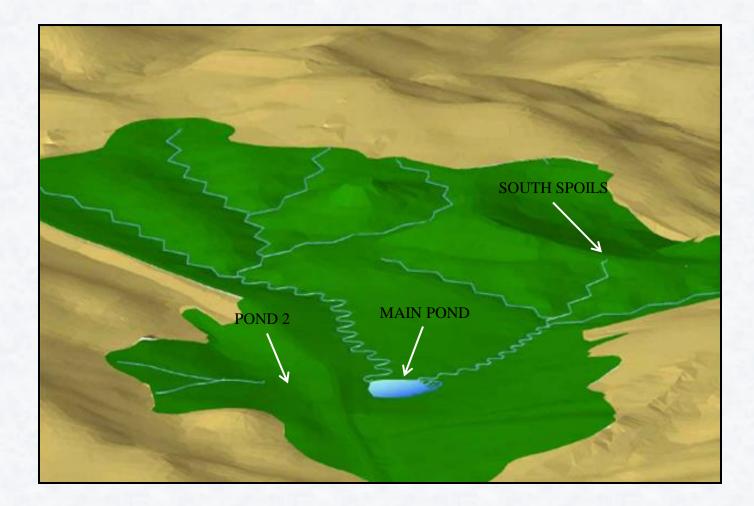
1 million cubic yards
 \$1.9 million bid cost
 127 acres of Natural Regrade TM design surface

Reliance No. 11 North Pre-Construction

Reliance No. 11 North Design


Reliance No. 11 North Post Construction

Reliance No. 11 North Highwall and Power Line



Post-Construction

Reliance No. 11 South Pre-Construction

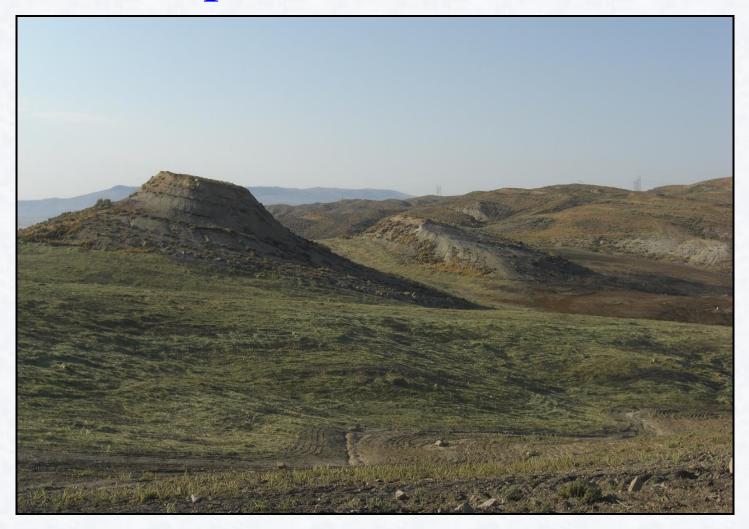
Reliance No. 11 South Design Rendering

Reliance No. 11 South Post Construction

Dangerous Spoil Pile

Reliance No. 11 South Eroded Pit Floor and Spoils

Reliance No. 11 North and South Design Approach •Combination of NR and traditional reclamation techniques Blend with native and outcrops • Used Carlson's stability criteria < 1.0 psf for bankfull flows</p> < 1.5 psf for flood-prone flows</p> Traditional structures Runoff attenuation impoundments Traditional flat-bottom channels Riprap erosion control structures


Reliance No. 11 South Design Representative Runoff Parameters

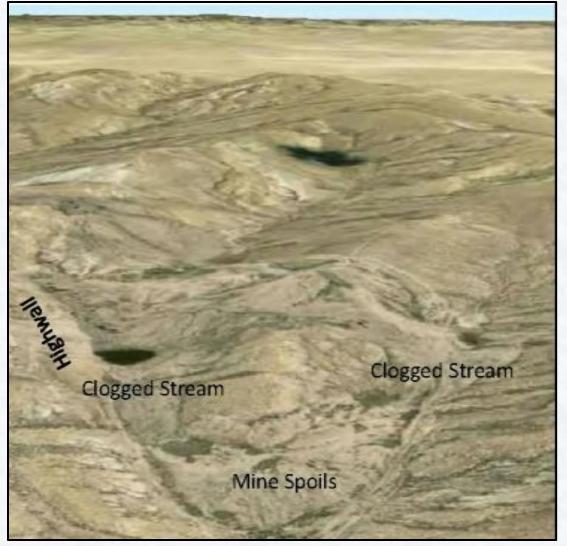
Basin Name	Bank-full Conditions*				Flood-prone Conditions**			
	width range (ft.)	depth range (ft.)	Shields shear stress, (psf)	Qpk (cfs)	width range (ft.)	depth range (ft.)	Shields shear stress, (psf)	Qpk (cfs)
Main	0.07 to 6.69	0.01 to 0.42	0.06 to 1.33	19.58	0.16 to 12.66	0.02 to 1.22	0.09 to 1.90	65.27
L-1	0.40 to 3.91	0.04 to 0.39	0.19 to 1.19	6.89	0.94 to 9.07	0.11 to 1.04	0.28 to 1.71	22.97
L-2	0.06 to 4.34	0.01 to 0.35	0.05 to 0.77	6.84	0.15 to 9.09	0.02 to 0.94	0.08 to 1.11	22.80
L-1 R1	0.30 to 3.07	0.03 to 0.31	0.24 to 1.07	4.24	0.69 to 7.12	0.08 to 0.81	0.34 to 1.54	14.14
L-1 R1 L1	0.44 to 1.77	0.04 to 0.18	0.39 to 1.07	1.42	1.03 to 4.11	0.12 to 0.47	0.57 to 1.54	4.72
L-2 L1	0.31 to 1.99	0.03 to 0.20	0.13 to 0.71	1.77	0.72 to 4.6	0.08 to 0.53	0.15 to 1.02	5.91
L-2 R1	0.42 to 2.61	0.05 to 0.21	0.16 to 0.67	2.51	0.89 to 5.48	0.09 to 0.63	0.26 to 0.95	8.38

Reliance No. 11 Traditional Reclamation Elements

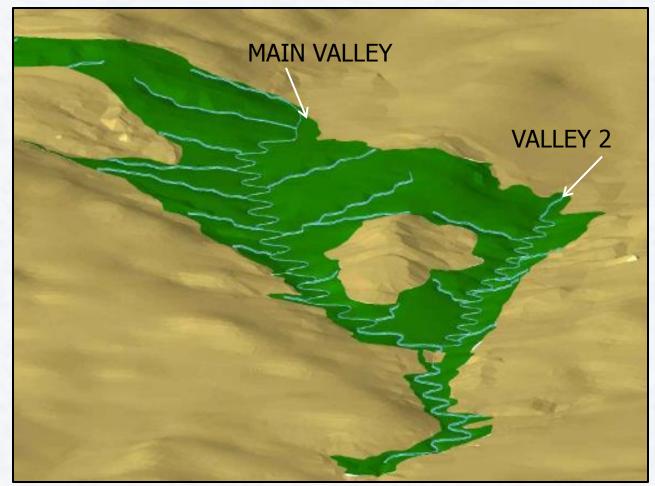
Reliance No. 11 South Completed Reclamation

Phase 2B

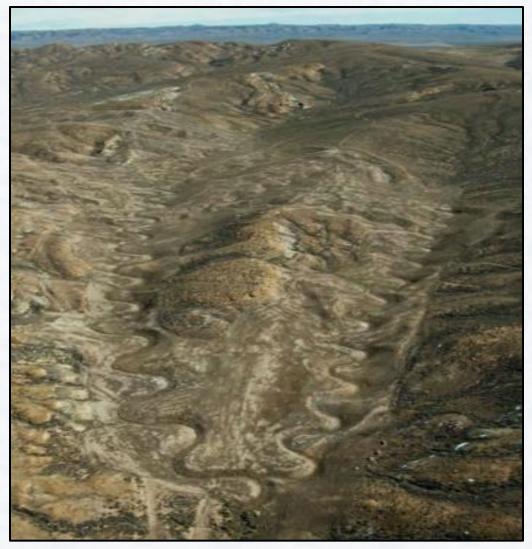
 Performance Evaluation
 Completed 2013 after four summers, minor vegetation re-establishing


- Despite damage due to off road vehicles, geomorphic channels performing well
- 18" pilot channel near a confluence repaired itself after high flows in fall 2013
- Damage to traditional channel areas

AML 17H-2B-II Project Details Reliance No. 3 & Lionkol Pits Project



1.2 million cubic yards
 \$1.9 million bid cost
 160 acres of Natural Regrade design surface


Reliance No. 3 Pre-Construction

Reliance No. 3 Design Rendering

Reliance No. 3 Post Construction

Reliance No. 3 Highwall

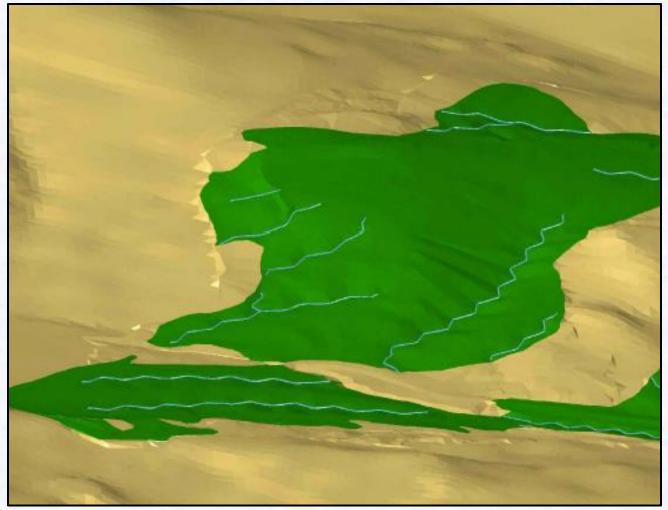
Reliance No.3 Pit with Highwall (center) Prior to Reclamation.

Exposed Auger Holes in Reliance No.3 Highwalls.

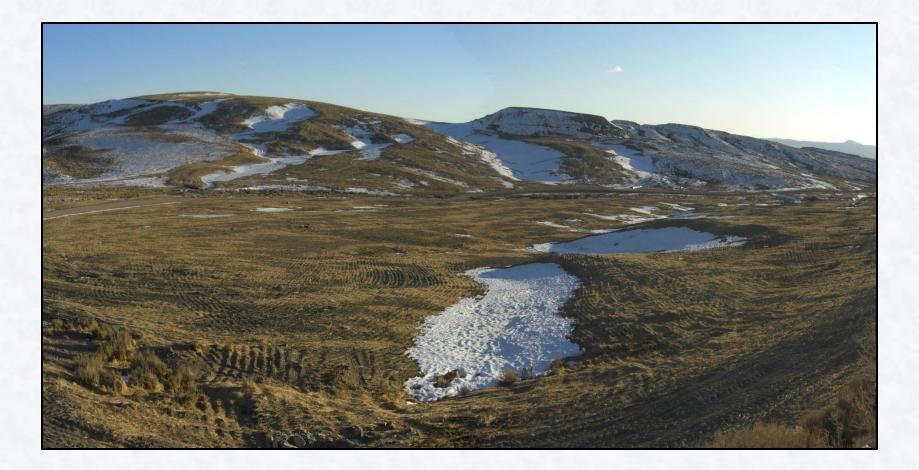
Spoils Blocking a Native Drainage at Reliance No.3 Pit Prior to Reclamation.

Reliance No. 3 and Lionkol Design Approach •Minimal traditional reclamation elements Detailed transition surveys to tie in contributing native basins High shear stresses allowed as design surface approximated the pre-mine surface with respect to elevations and channel configuration Erosion control structures at main channel ends

Main Runoff Parameters


Basin Name	Bank-full Conditions*				Flood-prone Conditions**			
	width range (ft.)	depth range (ft.)	Shields shear stress, (psf)	Qpk (cfs)	width range (ft.)	depth range (ft.)	Shields shear stress, (psf)	Qpk (cfs)
Main	11.40 to 16.19	0.74 to 1.02	1.03 to 1.61	74.08	22.40 to 32.41	2.20 to 3.04	2.58 to 3.00	277.80
L-5	0.40 to 2.46	0.07 to 0.20	0.29 to 0.58	2.24	0.89 to 5.46	0.09 to 0.57	0.49 to 0.88	8.40
L-6	0.22 to 2.65	0.02 to 0.21	0.18 to 0.86	2.55	0.53 to 5.87	0.06 to 0.64	0.27 to 1.31	9.58
L-6 L1	0.38 to 1.05	0.04 to 0.10	0.26 to 0.46	0.49	0.93 to 2.57	0.11 to 0.30	.40 to 0.69	1.85
L7	1.06 to 1.27	0.11 to 0.10	0.22 to 2.08	0.58	2.60 to 2.81	0.27 to 0.32	.36 to 3.17	2.19
L-8	1.06 to 1.49	0.11 to 0.12	0.19 to 0.72	0.81	2.61 to 3.31	0.28 to 0.37	0.32 to 1.09	3.04
R-4	0.24 to 1.98	0.02 to 0.16	0.22 to 1.43	1.46	0.58 to 4.42	0.07 to 0.51	0.37 to 2.17	5.47
R-5	0.20 to 1.96	0.02 to 0.16	0.29 to 0.79	1.40	0.50 to 4.34	0.06 to 0.48	0.48 to 1.20	5.25
R-6	0.89 to 1.62	0.09 to 0.13	0.24 to 0.75	0.96	2.18 to 3.59	0.23 to 0.40	0.40 to 1.13	3.61
R-7	2.07 to 2.66	0.21 to 0.21	0.36 to 0.87	2.58	5.08 to 5.91	0.54 to 0.62	0.61 to 1.33	9.66
R-8	1.36 to 2.11	0.14 to 0.17	-0.54 to 1.18	1.62	3.33 to 4.68	0.35 to 0.53	-0.90 to 1.79	6.06
R-9	1.14 to 2.41	0.11 to 0.19	0.33 to 0.80	2.11	2.81 to 5.36	0.29 to 0.60	0.56 to 1.21	7.91
R-9 R1	1.28 to 1.37	0.13 to 0.14	0.60 to 0.91	0.85	3.15 to 3.37	0.36 to 0.39	0.91 to 1.39	3.18
R-9 R2	0.46 to 0.59	0.05 to 0.06	0.32 to 0.45	0.16	1.13 to 1.46	0.13 to 0.17	0.49 to 0.69	0.60
R-10	1.11 to 1.42	0.11 to 0.11	0.19 to 0.76	0.74	2.74 to 3.16	0.29 to 0.34	0.32 to 1.16	2.76
R-11	1.06 to 1.27	0.11 to 0.10	0.20 to 1.03	0.59	2.60 to 2.83	0.27 to 0.32	0.34 to 1.57	0.59
R-12	3.34 to 3.75	0.33 to 0.30	0.73 to 1.97	5.07	8.22 to 8.32	0.87 to 0.95	1.23 to 2.99	19.00

Lionkol Main Pit



Initiation of Construction at Lionkol Main Pit Showing Oversteepened Slopes with Rilling.

Lionkol Design Rendering

Lionkol Main Pit

Completed Reclamation at Lionkol, Winter 2009. Note "A" Channels Capturing Snow in Upper Left.

Phase 2B-II

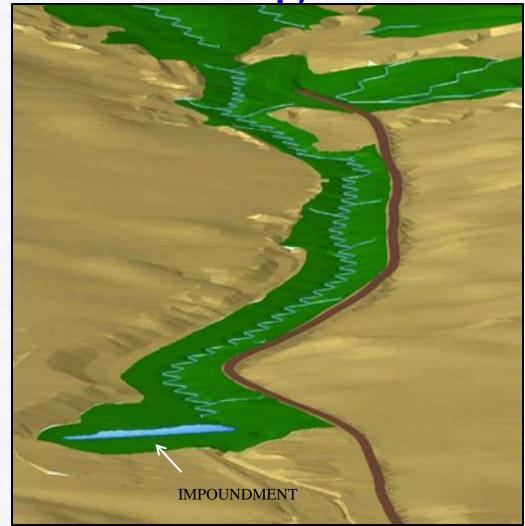
Performance Evaluation

- Completed 2013 after four summers, mixed vegetation success
- Despite high design shears, geomorphic channels performing well
- Four pilot channels formed, all on steep gradient "A" channels with contributing basin area.
- Meandering main channels performing well, validating the design approach

Lionkol Failing "A" Channel

Reliance No. 3 Native Grass and Shrub Establishment

AML 17H-2B-III Project Details Lionkol Drainage Project


135,000 cubic yards
 \$850,000 bid cost
 Zoned embankment, culverts, and road improvement
 32 acres of Natural Regrade design surface

Lionkol Drainage Pre-Construction

Lionkol Drainage

Lionkol Drainage Post Construction

Lionkol Drainage Channelization and Erosion

Lionkol Drainage Channelization and Erosion

Lionkol Drainage Design Approach •Minimal traditional reclamation elements associated with tie in to culverts and final impoundment Detailed transition surveys to tie in contributing native basins Regional regression equations (Miller) 2003) utilized for flow estimates, moving shear stress values closer to criteria Provide runoff attenuation and storage

Lionkol Drainage Eroded Channel at Historic Tipple

Lionkol Drainage Channel Alignment Around Cultural Site

Phase 2B-III

Performance Evaluation
Completed 2013 after one dry summer, limited vegetation
Despite large basin and high flow events, meandering geomorphic channels performing well

 Failures occurred associated with culverts and rock outlets, not geomorphic reclamation

Minor rilling of subchannel areas

Lionkol Drainage Constructed Channel after Storm



AML 17H-2B-IV Project Details Lionkol West Drainage Project

50,000 cubic yards
 \$465,000 bid cost
 22 acres of Natural Regrade design surface
 Coordination with BLM

Lionkol West Pre-Construction

Lionkol West Design

Lionkol West Post Construction

Lionkol West Design Approach *Similar to Phase 2B-III*

 Coordinated project with BLM to provide off site discharge of storm water from their Wild Horse Holding Facility in accordance with WYPDES requirements Site completely constrained by upper and lower culverts Additional site constraints due to utilities

and cultural site

Phase 2B-IV

Performance Evaluation
 Under construction fall 2013 during approximate 20 year storm flows (.23 to .5" in 24 hours)

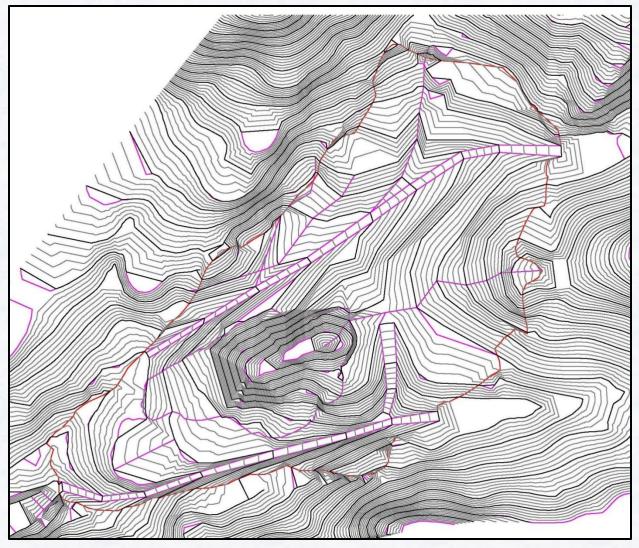
 Recent channel constructed of fill experienced erosion, others conveyed flow without significant damage

Lionkol West Channels after Storm

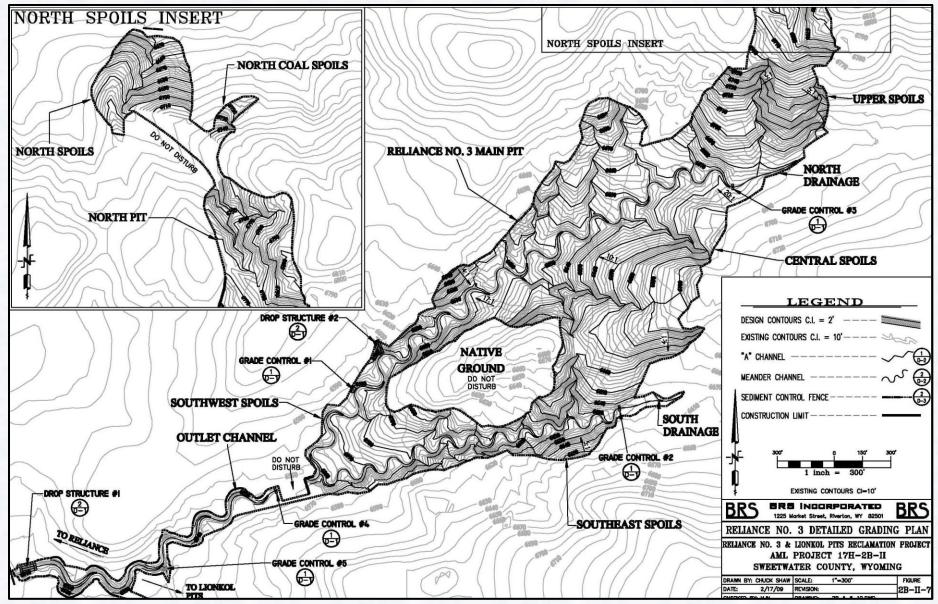
Channel Constructed in Fill

Channel Constructed in Cut

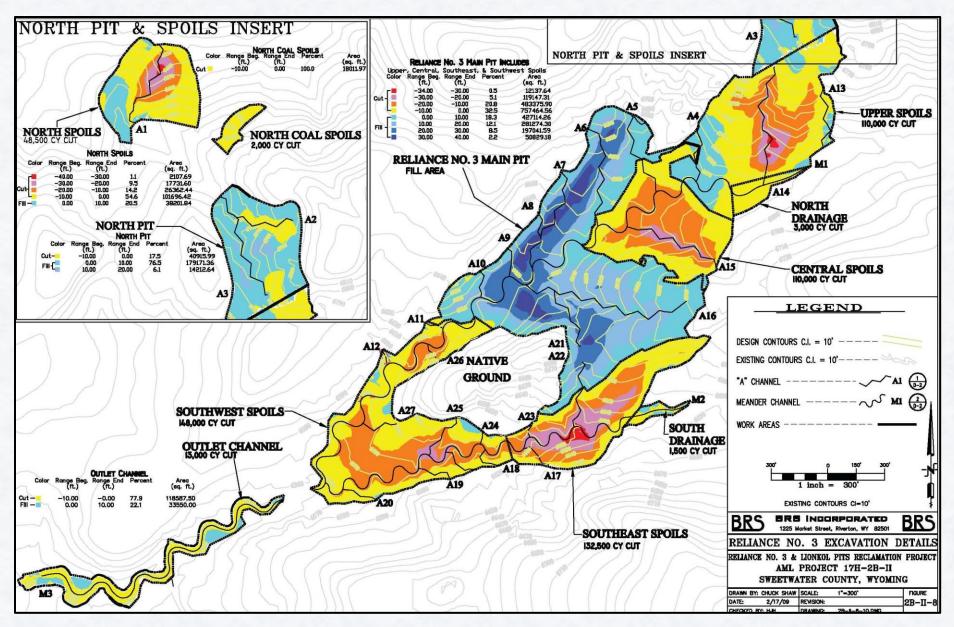
Lionkol West Fourwing Saltbush Planting


AML 17H-2B Lionkol Project Summary

- Implementation of geomorphic reclamation on a variety of site features
- Additional benefits realized by the City of Rock Springs and the BLM
- Advancing design approach provides opportunity for performance evaluations and improvements for future projects
- Overall performance of geomorphic reclamation is superior to traditional


Design Recommendations

- Careful characterization of site conditions including contributing basins, drainage characteristics, site materials, constraints
- Site specific estimation of runoff
- Mimic pre-mine configuration as closely as site conditions and budget allow
- Create Conceptual Design for NR Base TIN, to work toward earthworks balance and reasonable slope aspects
- Extensive Digital Terrain Model (DTM) cleanup may be required to obtain earthworks balance and provide safe working slopes without impacting design hydrology negatively.


RELIANCE NO. 3 CONCEPTUAL DESIGN

RELIANCE NO. 3 GRADING PLAN

RELIANCE NO. 3 EXCAVATION DETAILS

AML PROJECT 17H-2B CONSTRUCTION

ADVANCEMENTS IN GEOMORPHIC RECLAMATION DESIGN APPROACH

Paper Available Upon Request

Harold Hutson, P.E., P.G. – Project Manager 1130 Major Ave. Riverton, Wyoming 82501 307.857.3079 brs@bresnan.net