

Upland forest development in a reconstructed watershed after oil sands mining in northern Alberta, Canada

Brad Pinno, Fran Leishman, Ruth Errington, Morgane Merlin and Simon Landhäusser

Canadian Forest Service brad.pinno@canada.ca April 10, 2017

Oil Sands in Alberta

- Oil sands are in 3 main deposits in Alberta
- Mining used north of Fort McMurray, in-situ extraction used everywhere else
- Mining occurs where the oil deposit is thick and close to the surface, i.e. near the Athabasca River north of Fort McMurray
- Most of the rest of Alberta is underlain by conventional oil and gas deposits
- The cumulative impacts of oil & gas development, forestry, agriculture, recreation, other human uses and natural disturbances are very significant in Alberta

Note: 1 km² = 1 square kilometre = 0.39 square miles

Mines are where overburden is shallow.

Alberta's regulatory context

- Public land
- Requirements to reclaim wetlands and uplands but the landscape will be different
 - Equivalent land capability
- Focus on ecosystem function rather than productivity
 - Locally common species
 - Novel ecosystems

Natural landscape

- Boreal forest on the interior plains
- Half uplands, half wetland bogs and fens
- Borderline sub-arctic climate
- Moisture limited environment (455 mm)
- Soil storage dominates the water cycle

Sedge dominated fen

Tamarack and black spruce bog

Aspen-spruce mixedwood on mesic sites

Jack pine on xeric sites Canada

Reclaimed watersheds

- Priority for future reclamation is integrated upland – wetland watersheds
- Research in natural forests has highlighted the importance of wetlands for upland forest growth
- Reclaimed landscape will have more uplands and ponds but fewer bogs/fens than original landscape
- How is water partitioned between uplands and wetlands in this dry environment?

Wetland establishment research project

Natural lake surrounded by reclaimed forest

The same volunteer wetland 1 and 4 growing seasons after reclamation. These micro-wetlands form due to reclamation material subsidence and may be critical landscape features for keeping water on reclaimed areas.

Natural Resources Ressources naturelles

Canada

Sandhill Fen Watershed

- Reconstructed wetland upland watershed
- 50 ha in total size
- Old mine pit filled with tailings sand
- Hummocks to create uplands, wetland in lower areas
- Hummocks capped with salvaged forest soils
- Goal is to create a functioning upland-wetland ecosystem
- Linkages between the uplands and wetland portions
- Integrated research project but focus here on the upland forest

2011 - Construction

Fr

and the second

Photo from Syncrude

TET

ources Ressources naturelles Canada

Natural Resources Ressources naturelles Canada Canada

Natural Resources Canada

ces Ressources naturelles Canada

Upland vegetation study

- 2 soil types
 - coarse and fine textured
- 2 main tree species
 - Trembling aspen and jack pine
- 3 planting densities
 - 0, 5,000, and 10,000 sph
- Environmental variables
- Tree growth

Natural Resources

Canada

Understory development

Ressources naturelles

Soil water potential

- No difference between soils early on
- Soil moisture closely follows precipitation
- As vegetation develops the fine textured soil becomes progressively drier

Reconstructed soil profile with water potential sensors

Natural Resources Ressources naturelles Canada

Tree density and water

- High tree density results in lower water potential
- Longer term implications of how much leaf area these sites can support

Medium density pine in the foreground, high density in the back

Soil nutrient supply

- Lower availability of P and K in the fine textured soils
- Inorganic nitrogen did not vary over time or by soil

Trees

- Trembling aspen and jack pine
- 0, 5,000, and 10,000 sph planting densities
- Growth and water use

Jack pine

High density jack pine planting after year 1 and year 5

Natural Resources Ressources naturelles Canada

Tree growth

- Greater growth on fine textured soils, difference becoming greater over time
- Trembling aspen has more variable growth

Pine growth varies with aspect

- Pine larger on north facing plots
 - Cooler and wetter sites
- Aspen growth not influenced by aspect or planting density at this time

Tree water use (Stomatal conductance)

- Aspen has high water use and does not respond to soil
- Jack pine is more responsive to soil conditions
- Link to the long term water balance of the site

Plant community composition

Canada

Ressources naturelles Natural Resources Canada

Understory species richness

- Similar species richness between soil types
 - Coarse soil \rightarrow grasses
 - Fine soil \rightarrow forbs
- More introduced species on fine textured soil
- Higher diversity with higher density planting treatments and with north facing aspects

Understory vegetation cover

- Higher vegetation cover on fine textured soil, particularly native forbs
- Higher shrub cover on coarse textured soil

Vegetation development (LAI)

- Higher overall leaf area on fine textured soil
- Difference is increasing over time
- Tree leaf area becoming a more important component, particularly in high density plantings

Next steps

- How are soils, water, plants and trees interacting?
- How are the uplands and wetlands interacting?
- How are reclaimed ecosystems developing?

Structural equation modelling

Operational implications

East In Pit 100s of ha of tailings to be reclaimed in the

Kingfisher Watershed

Currently in construction

1,000s more ha of tailings to be reclaimed across the mine lease and the mineable oil sands region

coming decades

Thanks!

Canada

Natural Resources Ressources naturelles Canada

