

Constructing and Testing a Low Permeability Barrier Using Weathered Mine Spoil

Sarah Smith¹, Carmen Agouridis², Ph.D., P.E. and Richard Warner², Ph.D. University of Kentucky, ¹Department of Chemical Engineering, ²Department of Biosystems and Agricultural Engineering

Presentation Outline

- **Environmental challenges in Appalachia Coalfields**
- Problematic strata identification and isolation
- Project objective
- Methodology
- □ Results
- Implications

Environmental Challenges

- Mining process breaks apart rocks into smaller fragments creating larger surface areas that can interact with water
- Can lead to water quality impairments

U.S. Environmental Protection Agency (USEPA) Specific conductance (2011): 300-500 µS cm⁻¹

Problematic Strata (Spoil) Identification

Not all strata have same potential to generate high specific conductance and selenium levels

Se Overburden Strata

Problematic Strata (Spoil) Isolation

- Prevent water from infiltrating into problematic spoil
- Spoil isolation one method traditionally used with acid producing materials (not most common)
- Literature plentiful for clay barriers
 - Municipal solid waste, hazardous waste, low-level nuclear waste

Source: asme.org

Source: Bounce Energy

Weathered sandstone for use as spoil isolation barrier

Project Objectives

 Evaluate field saturated hydraulic conductivity levels on low permeability barrier constructed from weathered sandstones

Compare field-based saturated hydraulic conductivity values to those obtained in the laboratory

Low Permeable Barrier Construction

- Spoil dumped with CAT 777 and spread with CAT D9 dozer to nominal depth of 0.7 m
- □ Water incorporated as needed per da Rosa et al. (2013)
- □ One pass over entire layer with loaded CAT 777
- Continue layering technique until 3 m lift achieved (~6-7 layers per lift)

Source: cat.com

Source: cat.com

Source: cat.com

Methods: Spoil Characterization

- Spoil collected in 19 L buckets
- UK Regulatory Services
 - Percent sand, silt and clay
 - **USDA** textural triangle (USDA-NRCS, 2012)
- Liquid limit, plastic limit, and plasticity index
- Shake test

Methods: Laboratory Testing

- Standard proctor test (ASTM D698)
 - Maximum achievable level of compaction (ρ_{max}) for optimum moisture content (MC)
 - MC (gravimetric) ranged between 12-18%
- Saturated hydraulic conductivity (h_{sat})
 - Rigid wall double-ring permeameter

Methods: Field Testing

Two double-square infiltrometers

- Outer: 1 m x 1 m
- □ Inner: 0.5 m x 0.5 m
- □ Installed to depth of 0.5 m using Class 200 excavator

Methods: Field Testing

Filled inner and outer boxes with water

- **Two holes used to fill inner box, later capped**
- 1 m vertical pipe to increase hydraulic head and measure infiltration
- Allowed spoil to saturate for 1 month
- Measured hydraulic gradient for 5-6 hours, 15-min intervals (until steady state achieved)

Methods: Field Extracted Cores

- □ Four cores (0.7 m tall, 6.5 cm diameter)
- Compaction of spoil in core or below core
- Spoil could not be removed from core
 - Hydraulic conductivity measured in core tube in lab
 - Connected 5 m pipes to cores to expedite the process

Spoil was silt loam (80.2% fines); ML in USCS classification; low EC_{25°C}.

- Achieved average ρ_{max} of 2,100 kg m⁻³ at MC of 15% and average h_{sat} of 5.5 x 40⁻⁸ at MC of 16%
- Results similar to those from da Rosa et al. (2013) for brown weathered sandstone
- Lab core results showed average h_{sat} of 3.1 x 10⁻⁹ for all cores (additional compaction occurred with sample collection)
- Achieved comparable h_{sat} in field with loaded truck as compared to lab with proctor

Sand: 19.8±0.7 Silt: 54.1±0.3 Clay: 26.1±0.4

Spoil Subsample	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)
1	26	25	1
2	25	25	0
3	25	25	0

Spoil Subsample	Specific Conductance (µS cm ⁻¹)
1	42
2	41
3	38

- □ Spoil was silt loam (80.2% fines); ML in USCS classification; low EC_{25°C}.
- □ Achieved average ρ_{max} of 2,100 kg m⁻³ at MC of 15% and average h_{sat} of 5.5 x 10⁻⁸ at MC of 16%
- Results similar to those from da Rosa et al. (2013) for brown weathered sandstone
- Lab core results showed average h_{sat} of 3.1 x 10⁻⁹ for all cores (additional compaction occurred with sample collection)
- Achieved comparable h_{sat} in field with loaded truck as compared to lab with proctor

- □ Spoil was silt loam (80.2% fines); ML in USCS classification; low EC_{25°C}.
- Achieved average ρ_{max} of 2,100 kg m⁻³ at MC of 15% and average h_{sat} of 5.5 × 10⁻⁸ at MC of 16%
- Results similar to those from da Rosa et al. (2013) for brown weathered sandstone
- Lab core results showed average h_{sat} of 3.1 x 10⁻⁹ for all cores (additional compaction occurred with sample collection)
- Achieved comparable h_{sat} in field with loaded truck as compared to lab with proctor

Brown weathered sandstone from same mine $\rho_{max} = 2,400 \text{ kg m}^{-3} (MC=14\%) \quad h_{sat} = 1 \times 10^{-7} (MC=14\%)$ 52% sand, 34% silt, and 14% clay (48% fines)

- □ Spoil was silt loam (80.2% fines); ML in USCS classification; low EC_{25°C}.
- Achieved average ρ_{max} of 2,100 kg m⁻³ at MC of 15% and average h_{sat} of 5.5 x 10⁻⁸ at MC of 16%
- Results similar to those from da Rosa et al. (2013) for brown weathered sandstone
- Lab core results showed average h_{sat} of 3.1 x 10⁻⁹ for all cores (additional compaction occurred with sample collection)
- Achieved comparable h_{sat} in field with loaded truck as compared to lab with proctor

Core ID	Average h _{sat} (cm s-1)	% core filled
А	2.1 x 10 ⁻⁹	39
В	2.0 X 10 ⁻⁹	39
С	6.8 x 10 ⁻⁹	41
D	1.4 x 10 ⁻⁹	36

Approximately 94 days until cores were saturated

- □ Spoil was silt loam (80.2% fines); ML in USCS classification; low EC_{25°C}.
- Achieved average ρ_{max} of 2,100 kg m⁻³ at MC of 15% and average h_{sat} of 5.5 x 40⁻⁸ at MC of 16%
- Results similar to those from da Rosa et al. (2013) for brown weathered sandstone
- Lab core results showed average h_{sat} of 3.1 x 10⁻⁹ for all cores (additional compaction occurred with sample collection)
- Achieved comparable h_{sat} in field with loaded truck as compared to lab with proctor

 $h_{sat} = 6.7 \times 10^{-8}$

 $h_{sat} = 4.0 \text{ x } 10^{-8}$

Achieved comparable h_{sat} in field as compared to lab. Higher level of compaction with loaded trucks.

Conclusions

- Lab findings confirmed h_{sat} results from da Rosa et al.
 (2013)
- Field implementation yielded comparable h_{sat} to that produced in lab
- Can create effective low permeable barrier using brown weathered sandstone

Implications

- Isolating problematic spoil is critical of larger strategy to minimize impacts of mining (new and AML)
- □ Other necessary components include ...
 - Mine operations and planning
 - Construction of weep berms
 - Reforestation
 - Stream network

Acknowledgements

- Greg Higgins at Middle Fork Development
- Otto Hoffmann (UK)
- □ Alex Fogle (UK)
- Evan Wesley (UK)
- Tyler Sanderson (UK)

Questions?

