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Abstract. The estimation of actual or potential acid rock drainage (ARD) at mine 

sites is usually accomplished by sampling specific parameters that allow detection 

and prediction of the potential for ARD.  The use of block models to estimate and 

describe the spatial extent of relevant variables is becoming more common, 

although quantification of the uncertainty associated with the problem is generally 

not available, yet it can be critical in an ARD characterization study. 

Uncertainties in sampling and analytical processes, in the characterization of 

the volumes and areas affected or potentially affected by ARD, in the 

interpolation of sampled values, and in the characterization of physical processes 

that allow prediction of fate and transport, are always present.  It is unrealistic to 

pretend that the estimation process is error-free, and thus it follows that it is 

important to provide adequate models of uncertainty, in addition to reasonable 

estimates of ARD potential.  The model of uncertainty can then be used to 

develop technical risk assessments, including false positives or negatives of 

certain variables exceeding (or not) certain thresholds. 

This paper outlines a stochastic method based on geostatistical conditional 

simulations that allows assessment and modeling of uncertainty in spatial 

modeling.  This assessment is then translated into risk levels, allowing for a 

decision-making process that is based on levels of uncertainty.  The concept of 

Loss Functions is illustrated with an example drawn from a porphyry Cu-Mo 

deposit in South America. 
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Introduction and Objectives 

 Characterization of ARD is now a typical component of any Feasibility Study, remedial 

investigation, or closure planning in any mining project around the world, and requires a 

committed and time-consuming effort.  This investment is orientated initially towards assessing 

the potential for ARD in the short and long term.  Mitigation and minimization of future negative 

consequences of contamination on human population and ecosystem are also considered.  The 

results of such mitigating effort are generally measured in terms of eco-health and, sometimes, 

human health risk assessment. During this process, assessment of the risk associated with 

estimation errors is almost always lacking. 

 ARD characterization is usually accomplished by gathering field data of different types, such 

as neutralization potential, total sulfide, sulfur (or rather, SO4
-2

 sulfur), carbonate and carbon 

dioxide, as well as water quality analyses and specific trace elements. Several authors have 

discussed the use of field samples and blocks models to characterize different aspects of ARD-

related problems, see for example Miller and Hertel (1997), Downing and Giroux (1993), and 

Downing and Madeisky (1997). 

In practice, several factors contribute to technical risk, including but not limited to: 

 Uncertainties in the initial sample collection, which are related to sampling techniques 
used, the specific locations that are sampled and not sampled (i.e., sample location 

biases), and the relationship between sampling methods and the heterogeneity of the 

elements being sampled.  A common example is not sampling all the important rock or 

mineralogical types that may have an impact in ARD estimation and prediction. 

 Uncertainties related to sample preparation and analysis, see for example Gy (1982) and 
François-Bongarçon (1999), among many others. 

 Errors stemming from inadequate handling of data, including data entry and database 

management processes. These errors can be minimized using appropriate data handling 

and data quality objectives protocols. 

 Limitations related to overly simplified or inappropriate data evaluation and modeling 
techniques, statistical analysis, etc.  These include ignoring or overlooking significant 

sources of spatial and natural data variability. 

 Measurement errors related to the concentrations of the variable being analyzed. In many 
instances, the acceptable contaminant levels are very close to their laboratory detection 

limits (MDLs).  This may introduce a significant technical challenge at the time of 

sample analysis, since for most methods the accuracy and precision of the analysis 

degrades near the MDL.  The concept of Practical Quantitation Limit (PQL) has been 

proposed to overcome this problem, see for example Gibbons (1994). 

    Given the imprecise information handled, the overall uncertainty in the prediction processes 

involved may be significant. This uncertainty should be modeled, and should include 

uncertainties related to sampling and assaying, as well as uncertainty associated with the spatial 

modeling of the variables.   

 The objective of this paper is to present an alternative that allows to model uncertainty and 

quantify the potential risks related to prediction uncertainties.  
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Method 

This paper proposes the use of geostatistical conditional simulations and the concept of Loss 

Functions to model the uncertainty involved in ARD assessments.  These spatial stochastic 

simulation tools have become in recent years the preferred toolbox for uncertainty modeling and 

spatial data analysis for mining and petroleum applications. 

Many of the statistical techniques sometimes used to analyze environmental data are based 

on stringent assumptions about statistical distributions, lack of spatial correlation, and 

independence among the samples considered.  These are typical requirements of Gaussian-based 

statistical techniques often used, for example Analysis of Variance (ANOVA) and Cochran’s 

approximation to the Behrens-Fisher t-test, see among others Gibbons (1994), Gilbert (1987), 

and USEPA (1989).  Therefore, these techniques are inadequate in spatial statistics, where 

correlation between different sampled points is known to exist. 

Geostatistical Conditional Simulations 

A general background of the theory of geostatistical conditional simulations is given in 

Goovaerts (1997) and in Journel (1988).  The simulations are models that reproduce the full 

histogram and spatial continuity of the original conditioning data, and therefore, they honor the 

spatial characteristics of the variable as represented by the sample data.  In addition, it is possible 

to extend the use of these spatial statistical tools to the time dimension, see for example Rossi 

and Posa (1991).  

By honoring the histogram, the model correctly represents the proportion of high and low 

values, the mean, the variance, and other spatial statistical characteristics of the data.  By 

honoring the variogram it correctly portrays the spatial complexity of the variables, and the 

connectivity of low and high contaminant zones.  These are fundamental variables that need to 

be considered in order to improve predictions and diminish predictive uncertainty.  When several 

simulated images are obtained, then it can be said that a model of uncertainty has been obtained.  

Conditional simulations are built on fine grids, as fine as possible given the hardware 

available, so that they correspond to approximately the support size of the original samples.  The 

vertical resolution of the grid is a function of the support data, typically the size of the sampled 

or screened interval.  Larger grid sizes may still be used sometimes because of the amount of 

computer time and hard disk space involved.  In building a conditional simulation model, many 

of the decisions necessary in typical geostatistical estimations are required, most importantly 

regarding the definition of the simulation domains (stationarity). Changes in geologic or hydro-

geologic domains require splitting the data into different populations. Boundaries between 

simulation domains can be hard (no data influence across the boundary) or soft, where some data 

is used from the neighboring domain. Thorough understanding of the behavior of extreme and 

outlier values in the sampled population is required. Issues such as limiting the maximum 

simulated grade should be carefully considered. 

The simulation method itself should be decided based on the statistical characteristics of the 

variable being simulated, the quantity and quality of available samples, the availability of using 

fuzzy information such as geologic descriptions, and the desired output.  The most commonly 

used methods are the Sequential Gaussian (Isaaks, 1990) and Sequential Indicator (Alabert, 

1986).  The latter is more complicated, is based on multiple indicator kriging techniques 
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(Journel, 1988), and requires the definition of several indicator cutoffs. The former is simpler 

and quicker, although more restrictive in its basic assumptions. 

All available geologic and hydro-geologic information can and should be used, typically 

taking the form of “soft” or imprecise information.  For example, statements such as “Rock type 

A is highly acid generating” can be used as prior probabilities in a Bayesian sense, although the 

details of how to include imprecise information is beyond the scope of this paper. 

As with any geostatistical estimation exercise, variogram models should be obtained.  These 

may be particularly problematic, since sometimes there are not enough field samples to obtain 

such models.  This is a potentially serious issue, but there are a number of alternatives that can be 

resorted to when developing variogram models. Some of these include judiciously applying prior 

knowledge about the site, data censoring (or what to do with non-detects, sometimes a high 

proportion of the total sample population), allowed minimum and maximum data values, number 

of conditioning data to be used, search distances, and assumed directions of anisotropies. 

When a number of these conditional simulations have been run and checked, then, for each 

point defined in the grid, there is a set of possible values for the simulated variable available.  

These values are interpreted to describe the model of uncertainty for that point, generally 

arranged as a posterior cumulative conditional probability curve. Preferably, a large number of 

simulations are needed to describe this curve better.  However, due to practical limitations, a 

much smaller number, perhaps as small as 20-30 simulations, can be used as an initial 

approximation.  When there is significant conditioning information, these simulated values for 

each cell will not vary much, meaning that the most likely value is known with a good degree of 

certainty.  The opposite occurs when the cell has few samples nearby.  

The model of uncertainty obtained for each point can be described as: 

 

F(z;x|(n))  Prob {Z(x) z|(n), α1,...,n} (1)

F(z;x|(n)) represents the cumulative conditional distribution frequency curve for each vector 

x of the simulated grid, obtained using the  conditioning filed samples, and it 

provides the probability of that point in the grid of being above (or below) any contaminant 

value z. 

Loss Functions 

Final recommendations in Feasibility Studies and Remedial Investigations (FS/RIs) are 

typically based on predicted impacts on ecosystems and/or health risk assessments, which in turn 

are based on estimates of contamination, z
*
(x).  Since the true values at each location are not 

known, errors can and will likely occur.  The loss function L(e) (Journel, 1988; Rossi, 1999) is a 

mathematical function that attaches an economical value (impact or loss) to each possible error, 

measured in, for example, dollars.  If the full set of possible values is known at each location, for 

example in the form of the conditional probability distribution described in Equation (1), the loss 

function can be used to obtain the expected conditional loss: 
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E{L(zZ)|(n)} 






L(zz) dF(z;x|(n)) (2)

 The minimum expected loss is found by calculating the conditional expected loss for all 

possible values of the estimates, and retaining the estimate that minimizes the expected loss.  As 

described in Isaaks (1990), the expected conditional loss is commonly a step function whose 

value depends on the assumed costs of each bad decision, and the relative of costs of miss-

classification.  This implies that the expected conditional loss depends only on the classification 

of the estimate z
*
(x), not on the estimated value itself.   

The Loss Function thus quantifies the consequences of false positives and false negatives, 

weighs the relative impact of each, the probability of each, and then derives the minimum cost 

solution. For example, in an operation where the mine plan contemplates using the acid 

neutralizing potential (ANP) of the in-situ rock to influence the scheduling of waste stockpiles, 

the loss incurred when rock is predicted to be high in ANP when in fact it is not is a direct 

function of the costs incurred.  The cost of the mistakes made can usually be estimated and used 

to quantify risk.  In some extreme cases, when a significant loss of health, quality of life, or life 

itself results, the cost can be assumed to be infinite.  Figure 1 shows a typical Loss Function, 

where an overestimation error incurs in unnecessary costs, increasing linearly with the 

magnitude or the error, while an underestimation error causes the Loss to increase exponentially 

with the absolute value of the error, and for an error of 10.0, it becomes infinite. 

An Example from a Large Open Pit Mine 

The example described here corresponds to a large open pit porphyry Cu-Au deposit in South 

America. The purpose of the study was to evaluate the application of the geostatistical 

assessment of potential risks related to developing waste rock piles with nearly-zero net acid 

generating potential (AGP). Several variables have been analyzed from drill hole samples, 

including AGP and acid neutralizing potential (ANP) values, as well as sulfur in sulfates, pyrite, 

and As.  This example is based on ANP, which is defined as the potential for solutes plus 

particulates in an aqueous system to neutralize acid.  It is an estimate of alkalinity, commonly 

measured in water samples, except that it is taken from non-filtered samples, i.e., includes the 

acid neutralizing potential of the particulates that may be present.  Therefore, it is deemed more 

representative of the overall acid neutralizing potential of the in-situ rock.  

The development of waste dumps with non-acid generating potential may be accomplished 

by alternatively stacking acid generating rock and rock with high ANP as it comes out of the pit. 

To accomplish this, a spatial estimate of both variables is required well in advance of mining, 

such that it can be included in life-of-mine plan and schedule, which in this case is about 15 

years, and it implies attempting to estimate in-situ ANP values no less than 200 or 300 meters 

below current pit surface. 
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Figure 1: Hypothetical Loss Function, where a positive error is overestimation, a negative error 

underestimation. 

 

A preliminary analysis of the data available showed significant spatial and temporal 

variations in water quality as observed in active (pit dewatering) and background (water 

monitoring) wells, as well as in ex-pit surface water, and highly dependent on seasonal rains. 

Also, samples taken from exposed surfaces in the pit showed consistent levels of variation. A 

conditional simulation model was developed for remaining mining reserves (within the designed 

ultimate pit) for several variables using the Sequential Gaussian simulations (SGS) method. In 

order to develop the simulations, the following steps were completed: 

1. Initial exploratory statistical data analysis was performed over the whole database.   This 

included separating the ANP and other variables by domains, according to their geologic 

and statistical characteristics.  Among those, there are three domains with significant 

amount of gypsum, in the center and towards the periphery of the deposit. 

2. Variogram models were obtained for each variable within each domain.  In some cases, 

due to data scarcity, only an omni-directional variogram was modeled. The models (not 

shown here) evidence good spatial correlation within some units, with a relative nugget 

effect between 20 and 40% of total variance.  

3. The simulation grid was defined on a 5 x 5 x 5m cell, and 30 simulations were obtained. 

These simulations provide the model of uncertainty of Equation (1).  Figure 2 shows a 

plan view at level 330m of four of the 30 simulations representing acid-generating 
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potential
3
. The general spatial trends are reproduced in all simulations, although there are 

variations in the vicinity of higher values from simulation to simulation. 

4. The simulations models were properly validated using the original data and all other 

simulations parameters chosen. 

 

 

Figure 2: Four AGP simulations, pit level 330m, in meq/l. 

 

To visualize this model of uncertainty, several options are available. One possibility is to use 

probability maps, such as the one shown in Fig. 3.  In this case, the probability that the ANP 

variable be less than 4 milliequivalents per liter (meq/l) is shown for the same level 330m, which 

                         
3
 All values shown in this paper have been factored to protect confidentiality.  
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in this example is considered a critical value. Note that those areas with high probabilities are 

almost certainly acid-generating; the interesting areas are those where probabilities are close to 

50% (green shades in Fig. 3), where there is little certainty one way or the other.  The spatial 

trends observed are consistent with known geology, including the structural, alteration, and 

lithology models, including gypsum content. Also, the high probability area to the southwest of 

the picture corresponds to a simulation domain with few samples, and requires further 

confirmation. 

 

 

Figure 3: Probability map of acid neutralizing potential less than 4meq/l, pit level 330m, derived 

from the 30 simulated AGP models. 

 

Developing the Loss Function 

The Loss Function applied to evaluate risk in this case was based on the following Equation: 

 

Cost PotentialCost ActualLoss         (3) 

 

The general expression for the costs associated with each type of error are depicted in Fig. 1, 

where it is assumed that the costs of mishandling acid-generating rock increases exponentially 
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with the error magnitude (which includes an unknown future liability), while the cost of 

neutralizing rock that did not needed to be neutralized increases linearly with the error 

magnitude. This amounts to penalizing more underestimation than overestimation, and is a 

conservative position to take because the operator prefers to be safe and take little or no risks by 

ensuring that no acid is generated from future dumps. 

Results 

Applying the loss function described, it is possible to find out the actual economic losses for 

each simulated value in each cell of the study area, based on probabilities derived from the 

simulation models. Compositing these losses according to Equation (2) result in a mapped 

“optimal loss” classification.  The loss map shown in Fig. 4 is based on the simulations and the 

specific economic conditions assumed. The loss function suggests that, based on the cost of 

underestimation and overestimation assumed, it is better to neutralize a larger volume of rock, 

even if the likelihood of it being acid generating is very small. 

The differences between Fig. 3 and 4 depend on the shape of the assumed loss function. The 

associated risk for each type and level of error is not generally directly proportional to the 

probability of making the error, except when the loss function is linear for both error types. In 

this case, a probability measure from the conditional simulations (model of uncertainty) provides 

a direct measure of risk, which would make Fig. 3 and 4 similar. 

Interpretation  

 This brief example is shows the impact of applying the loss function method described. 

Traditional estimates provide a “best” estimated value based on nearby samples, but do not 

provide any measure if uncertainty. In the process of planning to avoid ARD issues, a model that 

provides not only an estimate but also a measure of uncertainty, i.e., what could the error of the 

estimate be, can be used to assess the risk resulting from the modeled uncertainty. Estimates such 

as kriging (in any of its forms) provide an estimate (called a minimum-variance estimate) which 

implicitly assumes that the consequences of estimation errors are only a function of the absolute 

error value, and the same whether it is over- or underestimation (Journel, 1988). Srivastava 

(1987) presents a very lucid discussion on the shortcomings of the minimum variance 

algorithms. 

 The situational, political, and socio-economic factors involved in any given case influence 

the risk tolerance of each mining operation and stockholders to ARD-related risks. The loss 

function method, while based on a somewhat subjective economic function that requires 

important assumptions, provides a way to incorporate the degree of risk tolerance specific to 

each situation. 

 Maps such as the one presented in Fig. 3 allows determining the volume of material that can 

be considered acid generating based on the probability of the ANP variable being above a certain 

threshold, which is an improvement over the use of single estimated value for decision-making. 

However, applying the loss function adds the possibility of measuring, in hard dollars, the 

consequences of the predicted error levels at each location, better assessing possible “what if” 

scenarios.  
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Figure 4: Loss function map (in $ terms), pit level 330m. Red means potentially high loss due to 

acid generation. 

Conclusions 

When trying to model ARD-related variables, make decisions, and eventually operate and 

monitor a prevention or mitigation program, it is often difficult to accurately assess and predict a 

number of technical aspects of the problem.  Most of these difficulties stem from intrinsic spatial 

and temporal variability of rock quality, sampling inaccuracies, and methodological errors. These 

variations can lead to mistakes in the decision-making process and may have important 

consequences. A method has been proposed here whereby the modeled errors are incorporated 

into the technical risk evaluation process through the use of stochastic conditional simulations, 

interpreted as models of uncertainty.  This requires going beyond the use of block models as has 

been proposed in the past while attempting to not only estimate the values of relevant variables, 

but to also provide a model of uncertainty. 

These models of uncertainty are then used to evaluate the consequences of all possible 

mistakes through the use of Loss Functions.  Evidently, the quality of the final product will 

depend on the virtues of the model of uncertainty, and the accurate reflection of incurred 

additional costs through the Loss Function defined. 

A major advantage of this method is its flexibility with respect to assessing costs, since in the 

formulation of the Loss Function there can be several types of costs included, such as the actual 

monitoring and mitigation operating costs, costs stemming from health risk assessments, other 
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costs that would be more speculative, including socio-political costs. The cost of such flexibility 

is a more mathematically involved methodology, and the responsibility that results from actually 

explicitly stating the hidden assumptions that are inherent to any risk assessment process. 

The use of the method outlined here is a risk-based decision-making and planning, performed 

based on a modeling technique which incorporates key uncertainties associated with ARD 

prediction, as well as a quantification of the consequences of potential errors. 
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