
MINERAL REACTIONS IN A COLORADO MINE DUMP: IMPLICATIONS FOR 
REMEDIATION IN ARID AND SEMI-ARID ENVIRONMENTS I 

Gene Whitney, Kenneth J, Esposito, and Kara N. Sweeney2 

Abstract: Preliminary examination of a combined mine/mill waste dump ftom the Topeka Mine, near 
Central City, Colorado, reveals four alteration zones distributed vertically within the waste pile. The surface 
of the waste pile contains unaltered waste rock with fresh metal-sulfide minerals. The interior of the waste 
pile (exposed by excavation) contains a leached zone, below which is a cemented zone in which pore spaces 
are filled with the minerals copiapite (Fe2+ Fe3+4(S04)6(0H)2 · 20 H20).and coquimbite (Fe3+2(S04)3 · 9 
H20). Copiapite and coquimbite are highly soluble and normally precipitate ftom fluids with pH= 0.8 to 1.5 
(Nordstrom and others, 1979). They are ordinarily associated with altered ore minerals that are protected 
ftom direct precipitation. Adjacent to the cemented zone, jarosite and gypsum have precipitated on and 
among grains of primary waste rock, indicating less extensive alteration and higher pH than in the cemented 
zone. Below the cemented zone, the dump exhibits only slight chemical alteration: even minerals highly 
susceptible to chemical alteration (pyrite, hornblende, biotite) are largely unreacted in this interior unaltered 
zone. 

Toe alteration patterns within the mine dump suggest that the dump is not flushed by fluids. The 
Topeka Mine dump is located at an elevation of2840 m (9320 feet). Toe average annual precipitation at the 
site is 51 cm (20 inches) per year and occurs as winter snow or as intermittent intense summer 
thunderstorms. Precipitation probably penetrates a few centimeters or meters immediately after a rain storm 
or snow melt period, allowing bacterial oxidation of sulfides within the temporarily saturated zone. After a 
fluid infiltration event, however, the surface of the dump dries rapidly while reacted fluids gradually 
precipitate dissolved components as copiapite and coqui_mbite within the waste. Remediation of a dump of 
this type under arid or semi-arid conditions must account for the fact that surface materials are only slightly 
reacted, but the interior may contain highly reactive, possibly metal-rich, soluble sulfate minerals. 

Additional Key Words: abandoned mine waste, metal contamination, soluble minerals, stream 
contamination, arid climate, sulfide oxidation, copiapite, coquimbite, melanterite. 

Introduction 

The upper Clear Creek drainage near Central City, Colorado contains mine waste and mill tailings 
ftom over 2000 gold/silver mines and prospects dating back to the discovery of gold in Clear Creek in 1859 
(Sims and others, 1963). Although some of the mine waste and mill tailings piles have been disturbed, many 
of the dumps in the Central City - Blackhawk area have been in place for 75-130 years. Careful study of 
these dumps may reveal important information about the nature and rates of alteration processes, may help 
to assess potential threat of mine waste and mill tailings to surface and groundwaters, and may provide 
information critical to remediation decisions. Because the primary ore in the region includes a variety of 
sulfide minerals, the threat of acid mine drainage and release of metals is significant. Toe purpose of the 
present study is to describe the distribution of secondary alteration minerals within an excavated mine dump 
and, by interpreting the relative importance of alteration and hydrologic processes, assess the potential threat 
of old mine dumps in the region. 

Geographic and Physiographic Setting 

The Topeka Mine dump is located approximately 3 miles southwest of Central City, Colorado (105° 
32' W, 39° 46' 56" N). The site is in upper Russell Gulch, a tributary of North Clear Creek, which ultimately 
enters the South Platte River near Denver (Figure 1). The Topeka Mine effectively ended production of gold 
ore in 1913, thus the minimum age of the tailings is 81 years. The mine waste lies on a south-facing slope at 
an elevation of 2840 meters (9320 feet). The tailings pile is approximately 200 meters (656 feet) long and 70 
meters (230 feet) wide, and has a maximum depth of about 20 meters (66 feet). Toe dump was partially 
excavated in 1992 as part of a secondary gold recovery and waste remediation project, and most of the 

1 Paper presented at the 1995 National Meeting of the American Society for Surface Mining and Reclamation, Gillette, 
Wyoming, June 5-8, 1995. 

2 Gene Whitney and Ken Esposito are geologists, U.S. Geological Survey, Denver, CO, and Kara Sweeney is a studeut 
at Middlebury College, Middlebury, VT. 
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samples described in the present study were taken from the exposed interior of the dump during the spring 
and summer of 1994. Annual precipitation at the study site is about 50 cm (20 inches) per year and occurs 
mostly as winter snow or as intermittent heavy summer thunderstorms. 
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Figure 1. Map showing location of Topeka Mine, near Central City, Colorado 
(after Sims and others, 1963) 

Primary Ore Mineralogy and Mine Waste Composition 

The gold and silver ore mined in the Clear Creek drainage around Central City occurs in veins along 
fractures and faults in metamorphic host rock. The host rock in the study area is dominantly gneiss and 
schist, and host rock minerals consist mostly of quartz, plagioclaseJ hornblende, and biotite with.lesser 
amounts of several other metamorphic minerals. No carbonate host rocks exist in this area and, thus, the 
neutralization potential of the host rock is small; carbonate minerals (calcite, siderite, rhodochrosite) occur as 
gangue minerals in some ores, but only in relatively small amounts. 

The sulfide minerals from the ore zones that are primarily responsible for the acid generation in the 
mine waste are spatially zoned within the mining district. Sims and Barton (1962) describe four zones at 
Central City, each containing a different suite of sulfide minerals. The variation in sulfide mineralogy within 
these four zones has been shown to determine the composition of waters issuing from mines in the Central 
City district (Wildeman and others, 1974). Therefore, understanding and predicting the chemical reactions 
within mine waste from different zones within this mining district must also consider the differences in 
primary sulfide mineralogy. The Topeka Mine lies within the "intermediate" zone of Sims and Barton 
(1962). Ore within this zone contains pyrite, sphalerite, galena, and copper minerals (chalcopyrite, bornite). 
Sphalerite, galena, and chalcopyrite not only react in different ways and at different rates than pyrite, but 
their reactions would release Zn, Pb, and Cu into reacting fluids and generate different amounts of acid 
(Rimstidt and others, 1994). It is the fate of these metals that we must understand in order to assess the 
potential threat of these old mine dumps. 
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The Topeka Mine dump contains both mine and mill waste and is very heterogeneous. Not only 
does the size of primary particles range from submicrometer to tens of centimeters, but different zones within 
the dump contain different particle size dislributions. Thus, zones containing primarily waste rock from the 
mine have both high porosity and high permeability owing to the extreme variability of particle sizes, 
whereas other zones contain primarily fine-grained mill waste and are only slightly permeable. This textural 
variability within the mine dump may have profound effects on the hydrology of the dump and the rate at 
which the sulfide minerals react. Thus the heterogeneity of the tailings is likely to produce gross variations 
in alteration mineral zonation. 

Sample Collection and Analytical Methods 

Remediation and gold recovery operations in 1992 exposed an interior section of the Topeka Mine 
waste pile, which contains both mine waste and mill tailings. The excavation permitted sampling from the 
upper surface of the dump down to approximately 7 meters (23 feet) into the center of the waste pile. A total 
of 28 samples were taken from the upper surface, flanks, and interior of the mine waste. Samples were taken 
from the immediate surface in order to assess the effects of surface weathering, and also from trenches dug 
into the surface and flanks of the dump to examine the variability of reactivity with depth. The surface of the 
exposed face of the dump interior was sampled, and the surface of the exposed face was also penetrated to 
sample deeper within the interior because water-soluble salts had coated the surface in the two years since 
excavation. Samples of about 1 kilogram each were collected in plastic zip-Joe bags to preserve the 
hydration state existing in the field. 

Although several of the samples were slightly moist when collected (January and July, 1994), there 
was insufficient fluid in the waste to collect for analysis. Several of the samples were leached by placing 5 
grams of solid into 100 ml of distilled water. The mixture was allowed to equilibrate for one hour and then 
centrifuged to separate the fluid from the solids. Leach solutions were analyzed using a Corning Model 135 
pH/ion meter with an Orion combination Ross electrode for pH measurements, and flame atomic absorption 
spectrophotometry for elemental analysis. 

The bulk mineralogy of each sample was determined using conventional X-ray powder diffraction 
techniques (Klug and Alexander, 1974). Each sample was X-rayed as soon as possible after removal from 
the sealed plastic bags because of the ephemeral nature of some of the water-soluble minerals. In some 
cases, samples were analyzed several times over a period of days while left to dry in air, and changes in 
mineral characteristics were observed (primarily degree of crystallization). 

Because most samples of mine waste collected contained a substantial proportion of very fine-
grained material, several samples were examined using the scanning electron microscope (SEM). A small 
(1-2 cm) fragment of coherent material was glued to an aluminum SEM stub and coated with a conductive 
layer of either gold or graphite. Samples were viewed on a Cambridge Stereoscan SEM. Qualitative and 
semiquantitative elemental analysis of minerals were obtained in the SEM using an energy dispersive X-ray 
spectrometer attachment. 

Alteration Zones in the Waste Pile 

After examining the waste pile in the field and analyzing the mineral composition from samples 
taken from the surface and interior of the dump, four mineralogical zones have been identified (Figure 2): 

1. Surficial unaltered zone 
2. Leached zone 
3. Cemented zone 
4. Interior unaltered zone 

Neither the surficial unaltered zone or the interior unaltered zone is pristine. Both zones exhibit 
some signs of alteration. However, they are the least altered or oxidized zones within the dump. The 
surficial unaltered zone blankets the exterior of the dump. It is highly variable in thickness but is generally a 
maximum of a few centimeters thick and consists mostly of materials that have Iain on or near the surface of 
the dump since disposal. The materials on the surface include coarse-grained, shiny, untarnished pyrite and 
other sulfide minerals plus unaltered feldspars, biotite, and amphibole. These materials show little or no 
signs of oxidation or weathering. Included in the surficial unaltered zone, however, are boulders and large 
rock fragments coated with Fe-oxides. These coatings indicate that some surface oxidation has occurred 
during their 81 years of exposure, but it has not been severe enough to corrode all of the coarsely crystalline 
pyrite. 
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SURFICIAL FRESH ZONE 

Figure 2. Schematic drawing of alteration zones within the Topeka Mine dump. The total depth of the 
dump is about 20 meters. The excavated section of the dump (shown here) is approximately 8-10 
meters. Only a small portion of the dump is depicted. 

Beginning a few centimeters below the surface, and extending to a depth of approximately 1-3 
meters (3-1 O feet) is a leached zone consisting of altered silicate minerals (feldspar, biotite, hornblende, 
quartz) and oxidized sulfide minerals, with secondary gypsum and jarosite. 1his zone is also highly variable 
in thickness and depends partly upon the small-scale hydrologic characteristics of the dump. Although we 
have not yet conducted detailed chemical analyses on these materials, the waste in this zone commonly 
appears bleached and altered, suggesting depletion of soluble elements. 

The leached zone is underlain by a compact, K-depleted zone of pore-filling secondary minerals, 
some of which are soluble in water. 1his cemented zone is dominated by the minerals copiapite 
(Fe2+Fe3+ 4(S04)6(0H)2 · 20 H20) and coquimbite (Fe3+2(S04)3· 9 H20). X-ray diffraction data for the 
cemented zone minerals is shown in Figure 3. Both copiapite and coquimbite are found in low pH (0.8-1.5) 
environments and both reflect mildly oxidizing conditions (Nordstrom and others, 1979). Copiapite contains 
both ferric and ferrous iron, coquimbite contains only ferric iron and may form in a slightly more oxidized 
microenvironment or may form as an oxidation product of copiapite. Both minerals are highly hydrated and 
are highly soluble in water. The precipitation of these minerals has produced a cemented zone approximately 
1-2 meters (3-6 feet) thick. The zone varies in thickness and in some places appears to occur in 
discontinuous pods or lenses. Copiapite and coquimbite occur in massive zones with gypsum andjarosite, 
grading outward into zones that contain only gypsum andjarosite as secondary alteration products. 

Examination of the cemented zone with SEM reveals the textural relationships among the secondary 
alteration minerals. Samples from the cemented zone contain a framework of precipitated laths or fibers of 
gypsum within the pore spaces of the waste. The needles and laths of gypsum are, in tum, coated with later 
secondary Fe alteration minerals, including copiapite, coquimbite, and possibly melanterite (FeS04 · 7H20) 
(Figure 4), though melanterite was not identified by X-ray diffraction. In addition, copiapite occurs as 
masses of tapered lath-like crystals coating the surface of the waste pile (Figure 5). The physical 
relationships among the crystals of the various minerals indicates a system out of equilibrium or reflects 
microenvironmental equilibrium (Nordstrom and others, 1979). The physical arrangement of the minerals 
demonstrates the order in which they have precipitated and shows that the Fe-sulfates precipitated after the 
gypsum. Because the secondary Fe-sulfate minerals are so similar chemically, it becomes extremely difficult 
to distinguish among them using the elemental analyzer in the SEM, though they can be easily distinguished 
from gypsum, jarosite, and primary silicate minerals. Thus, even though we can say that gypsum is coated 
by Fe-sulfate minerals exhibiting a variety of crystal forms and morphologies, it is not possible at this time to 
determine which specific Fe-sulfate minerals assume the various forms. 

Beneath the cemented zone, the tailings are generally only slightly altered and contain only minor 
amounts of gypsum and jarosite as alteration minerals. In this lower zone, called here the interior unaltered 
zone, the primary minerals are either fresh or only slightly altered. The extent of this zone is impossible to 
discern at this time because only a few feet of waste is exposed below the cemented zone. 
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Figure 3. X-ray powder diffraction data for copiapite, coquimbite, and other waste minerals from the 
cemented zone of the Topeka Mine dump. CuKa radiation was used. 

Leaching Experiments 

Because the secondary Fe-sulfate minerals (copiapite and coquimbite) are quite soluble in water 
(Nordstrom and others, 1979), and because several metals may substitute isomorphously within the structures 
of these minerals, it is possible that these secondary minerals contain potentially toxic metals that are subject 
to regulation. Because we are interested in knowing whether such minerals may release metals if dissolved, 
a series of dissolution experiments were undertaken to examine the behavior of these cementing minerals 
when flushed with water. Ten grams of each of five samples from within and adjacent to the cemented zone 
were placed in 200 ml of distilled water and the pH of the resulting solutions was determined after 2 hours 
equilibration time at 22°C, and the solutions were centrifuged until clear and then analyzed for several metals 
(Table 1). Sample KS-1, taken from the center of the cemented zone, demonstrated the nature of the 
anticipated release of acid and metals. 1his sample produced a solution pH of 2.1 and the solution was 
enriched in Fe, Al, Cu, Zn, and Mn. Moving vertically away from the center of the cemented zone at the 
excavated face of the dump, the solution pH increased and concentration of dissolved Fe and Al decreased. 
In fact, the relationship between the pH of the solution and the concentrations of Fe and Al is striking when 
plotted on a log-log plot (Figure 6a, 6b ). This strong correlation is not surprising, considering that both 
Fe and Al are highly soluble at low pH and form hydroxyl complexes and precipitates as pH increases. 

The relationship between pH and K concentration is equally striking, but is an inverse correlation 
(Figure 6c). The minerals that precipitate from low pH fluids are not expected to contain large amounts of 
competing cations, such as K. Thus, when these minerals are dissolved in water, little K is released. As pH 
increases (concentration of H+ decreases), more cations may be incorporated into the precipitate and are 
released when the solids are placed in water. 

Copper shows a mild inverse correlation between concentration and pH (Figure 6d), but the 
correlation appears less striking than for Fe and Al. The range of Cu values is much smaller than for Fe and 
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Figure 4. SEM micrographs of the 
cemented zone of the Topeka Mine 
dump. The rods and laths are 
gypsum, with cubic crystals of 
Fe-sulfates precipitated later. 
Scale in each photo is shown by 
length of white bar. 

Al, and Cu is less likely to be affected by pH than Fe and Al. Zn and Mn exhibit no relationship to pH at all, 
though both are released in significant concentrations (Figures 6e, 6f). Therefore, the cemented zone clearly 
contains significant amounts of metals that are potentially toxic when released in the event of contact with 
water, but the release.of Fe, Al, Cu, and acid is far less from the bulk of the tailings pile surrounding the 
cemented zone. 

Each of the solutions produced by mixing the minerals from the cemented zone with water was 
allowed to evaporate to dryness at 60°C and the resulting solid precipitate analyzed by X-ray diffraction. 
Though the amount of precipitate produced by each sample was inversely proportional to the pH of the 
solution, each produced the mineral rhomboclase (Fe3+ H(S04)2 · 4H20) when dried. Because the Fe-
sulfate species precipitated from such solutions is temperature sensitive (Reardon and Beckie, 1987), 
rhomboclase is not necessarily the mineral that would precipitate from these solutions under natural 
conditions. 

Discussion 

Layered alteration patterns within sulfide mine waste have been described previously. Boorman and 
Watson (1976) discovered a "hard pan" layer composed predominantly of Fe-oxides and hydroxides in 
sulfide-rich mine waste from Cu-Zn-Pb mining in New Brunswick. The hard pan layer is situated at the base 
of an oxygenated saturated zone near the surface of the waste pile in which bacteria catalyze the oxidation of 
sulfides. Toe soluble oxidation products are leached from the oxidation zone and transported downward by 
infiltration. When the solutions reach saturation with respect to various Fe-minerals within the vertically 
changing chemical conditions, they precipitate a variety of Fe-rich phases and form the hard pan layer. A 
similar scenario was described by Mcsweeney and Madison (1988) in mine waste from Pb-Zn mining in 
southwest Wisconsin. Although the geometric relationships among the alteration zones were similar to those 
of Boorman and Watson (1976), the cemented zone contained Fe-sulfate minerals, including copiapite. 
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Figure 5. SEM micrographs of 
copiapite laths that form a smooth 
coating on exposed surfaces of the 
cemented zone of the Topeka Mine 
dump. Scale in each photo is 
shown by length of white bar. 

Table I, Chemical compo.sition of solutions of samples mixed with water (10 grams solid in 200 ml 
water). All metal concentrations are reported in ~glml. 

SAMPLE J;ili Es: .Al K QJ. Zn 

KS-1 2.1 7200 520 0.1 35.0 520 
KS-2 2.6 540 120 0.2 8.0 160 
KS-3 3.7 23 88 0.7 12.5 600 
KS-4 4.4 0.19 1.8 3.6 1.6 260 
KS-5 4.5 0.08 2.2 4.2 1.0 620 

SAMPLE MD !& I:!! & Ill Qi 

KS-1 110 2 2 12 <1 2 
KS-2 35 <1 <1 <1 <1 <] 
KS-3 29 <1 <1 <1 <1 2 
KS-4 27 <1 <1 <] <1 <1 
KS-5 116 <1 <1 <1 <1 4 

583 



10000 

1000 

100 

"E° 
! 1 0 .. ... 

0.1 

0.01 
1 

1 0 

i 
.9, 1 

" 

"E° ! 100 

" N 

R2 • 0.97 

• 

2 3 4 5 
pH 

R2 • 0.98 

.. 

1000 
R • 0.87 

100 .. 
~ 

§: 
~ 

;,10 

J' 
1 

6 1 2 3 4 5 6 
pH 

100 
R2 • 0.77 

• 
~ 

. !10 • 
" • u 

1 
1 2 3 4 5 6 

pH 

.. .. 
.. .. .. 

Figure 6. pH vs. dissolved metals in leachate from samples taken from the cemented zone of the 
Topeka Mine dump. The sample producing the lowest pH was from the center of the cemented 
zone, and incrementally higher pH represents samples taken from further from the center of 
the cemented zone. (a) pH vs. dissolved Fe, (b) pH vs. dissolved AI, (c) pH vs. dissolved K, (d) 
pH vs. dissolved Cu, (e) pH vs. dissolved Zn, and (f) pH vs. dissolved Mn. 

Blowes and others (1991) re-examined the tailings that Boorman and Watson (1976) had studied and also 
investigated a similar set of tailings from Cu-Zn mining in Quebec. Again, they identified an oxidized and 
leached zone at the top of the dump, an underlying cemented zone which is composed of Fe-oxides or 
sulfates (including melanterite), and an underlying zone of relatively unaltered mine waste. In all three of 
these mine waste alteration scenarios the cemented zone is enriched in Cu, Zn, and Pb, as well as Fe and 
other metals. 

Although no detailed studies have been performed on the hydrology of the Topeka Mine waste pile, 
circumstantial evidence suggests that the dump is rarely saturated with water and that fluids do not routinely 
penetrate the pile. The total amount of precipitation in the area is low (51 cm (20 inches) per year), despite 
the high elevation, and much of that precipitation occurs as intense thunderstorms during the summer. The 
physical setting of the dump confirms that the waste pile remains unsaturated or dry most of the time. For 
example, the waste dump sits directly upon a dark, organic-rich soil which has been exposed by the recent 
excavation. The soil shows little evidence of contact with fluids descending from the overlying waste except 
for the presence of minor amounts of gypsum. There is no evidence for fluids issuing from the toe of the 
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dump, and the physiography of the site indicates that the water table must be a substantial distance beneath 
the ground surface. There are no surface streams or permanent stream channels within several hundred 
meters of the site. Conversely, there is strong evidence for surface wash from the intermittent summer 
thunderstorms. The surtace of the waste pile is cut by rills and gullies, and substantial amounts of tailings 
have been washed downslope. Therefore, even though the surface of the dump has been washed by severe 
thunderstorms, there exists little or no evidence for flushing of the interior of the tailings plle by fluids. 

With this in mind, the scenario for formation of the cemented layer, composed of highly soluble Fe-
sulfate minerals, within the tailings pile may be formulated. 1) Small amounts of water enter the upper 
surface of the waste dump by melting of snow or during a thunderstorm. The volume of water is insufficient 
to saturate the entire thickness of the dump, and the upper zone alone is moistened. At the surface, drying is 
rapid and iron and sulfur oxidizing bacteria cannot metabolize sulfide minerals effectively In dry material. 
Thus, a thin layer of sulfidlc material remains unaltered at the surface of the dump. 2) Immediately below 
the surface of the dump there is a zone of waste that periodically becomes saturated by oxygenated fluids, 
allowing the metabolic activity of iron- and sulfur-oxidizing bacteria to catalyze the oxidation of sulfide 
minerals (Singer and Stumm, 1970). 3) The descending fluids transport the soluble products of oxidation 
into the waste pile, but there is insufficient fluid to flush the entire thickness of the dump and oxygen 
becomes depleted by chemical and biological reactions. 4) Thus at a certain depth within the dump, 
determined by fluid volume, oxygen content, and rates of evaporalive concentration, the fluids become 
supersaturated with respect to secondary minerals and those minerals precipitate at that depth. 5) 1bis layer 
of pore-filling minerals then becomes a retardant to subsequent fluid flow and the layer grows in thickness 
and continuity, cutting off the fluids from the deeper levels of the dump. This results in a mine dump 
consisting of stratified zones of alteration as shown in Figure 2. 

ImpHcations for Remediation Strategies 

During the approximately 81 year lifetime of the Topeka Mine tailings pile, a zone of water-soluble 
metal-bearing Fe-sulfate minerals has formed In the Interior of the dump. These soluble minerals have not 
been flushed to release the metals that are concentrated lhere. Even after 81 years of exposure to winter 
snows and summer thunderstorms, the metals released by oxidation of the upper zone of the dump have been 
transported to a depth of a few feet within the dump. However, once this dump was excavated, the cemented 
layer containing the soluble materials was exposed to snow and summer thunderstorms. Surface textures of 
the cemented zone indicate that some of the copiapite and coquimbite has been dissolved and reprecipitated 
as smooth coatings on the surface of the dump, demonstrating the ease with which the material is 
remobilized when exposed to water. 

If the entire durop is excavated and moved to a different site, the soluble metal-bearing minerals will 
potentially be exposed to direct contact with precipitation. If that occurs, the soluble sulfate minerals wlll 
dissolve and release the metals and acid into the reacting fluids, producing a serious chemical hazard to 
streams and groundwater. Thus the material would need to be completely remediated or isolated from 
moisture immediately. Alternatively, if there is no compelling reason to move the tailings, these preliminary 
data suggest that mine dumps with characteristics of lhe Topeka Mine dump, located in similar areas oflow 
precipitation, may pose little threat to surface or groundwaters, except for stormwater runoff, and may be 
strong candidates for in-place closure techniques (Lewis-Russ and duPont, 1994). 

It is important to note that precipitation patterns vary dramatically in mountainous areas, and that 
some areas relatively nearby receive much greater amounts of precipitation than the Central City area. 
Increased precipitation may seriously change the dynamics of oxidation and transport within the mine 
tailings and each sitnation must be evaluated individually based on local waste characteristics, physiography, 
and weather patterns. 

Summary and Conclusions 

These preliminary analyses suggest that the formation of alteration zones within the Topeka Mine 
dump have produced a steady state environment within the tailings that has allowed little or no metal-bearing 
fluid to emerge from the mine waste even after more than 81 years. Such long-term stability in mine waste 
may be important when decisions are made about remediation requirements and techniques for sulfide-qch 
mine waste in low-precipitation areas. 
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