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USING SATELLITE IMAGERY TO CHARACTERIZE LOCATIONS, 

AGES AND WOODY CANOPY COVER OF RECLAIMED SURFACE 

MINES IN APPALACHIA, USA
1
  

S. Sen
2
, C. E. Zipper, R. H. Wynne, P.F. Donovan, J.W. Coulston 

Abstract: The Appalachian region of USA hosts diverse forests and abundant 

high-quality coal reserves.  Surface mining methods are often used for coal 

extraction.  Because common reclamation methods in past years have not restored 

forest vegetation, surface mining has created a diverse land base.  Although some 

mined lands have been placed into managed uses, most have not.  Little is known 

about the extent and nature of the land resource base created by surface coal 

mining in Appalachia.  Here, we report on development of methods for 

interpreting imagery acquired by the Landsat satellites since the early 1980s to 

identify surface-mine land disturbances by date of mining, and to estimate current 

woody canopy on those mined areas.  We have conducted these analyses working 

within a study area in southwestern Virginia’s coalfield.  The mined-area 

identification algorithm, when applied to an independent dataset, was found to 

identify mined/non-mined areas correctly with an overall accuracy of 89.1%, with 

87.4% of mined areas within the independent dataset were classified correctly as 

mines.  Incorrectly classified mines were often areas with low levels of vegetative 

cover nested within correctly classified mine areas.  Preliminary results show that 

woody canopy cover on mined and reclaimed areas can be estimated successfully 

using Landsat (0.80 R
2
).  Future work will further develop these procedures and 

apply them over a test area.    

 

Additional Key Words: Landsat, Coal Mine Reclamation, Mine Reforestation, 

Ecosystem Restoration. 
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Introduction 

Coal mining has resulted in disturbance and reclamation of lands throughout the coal-bearing 

areas of eastern USA’s Appalachian Mountains. The federal Surface Mining Control and 

Reclamation Act (SMCRA), passed in 1977, established minimum reclamation standards for 

coal mined lands throughout the USA, including Appalachia.  US Office of Surface Mining data 

indicate that more than 600,000 hectares have been mined under SMCRA in the Appalachian 

region.  Within the coalfields of southwestern Virginia, more than 40,000 hectares have been 

mined under SMCRA (US OSMRE) while over 20,000 hectares of land were affected by the pre-

1977 mining activities (D’Appolonia, Inc. 1980).  

In the years following SMCRA’s implementation, Appalachian surface coal mines were 

often reclaimed with herbaceous vegetation which satisfied regulatory standards by establishing 

vegetative cover suitable for post-mining land use over the SMCRA-mandated bonding period, 

five years for active mines (Angel et al., 2005).  Although some mined lands were reclaimed to 

support grazing and others have been reclaimed to support commercial or industrial uses, the 

majority are unmanaged.  Reclamation with woody vegetation to support uses such as wildlife 

habitat and unmanaged forest have become more common in recent years (Angel et al., 2009; US 

GAO, 2009).  On lands reclaimed using conventional SMCRA methods, mine soils were often 

reclaimed using practices that satisfied legal standards but hindered restoration of the hardwood 

forests that occur extensively as native vegetation throughout the area (Angel et al., 2005).  

While some of these lands have been planted with native trees such as eastern white pine (Pinus 

strobus) and black locust (Robinia pseudoacacia) and others may reforest with native trees 

naturally, many remain in predominantly herbaceous cover for extended periods (Zipper et al., 

2007).  It is possible for post-SMCRA mined lands to be converted to productive native woody 

vegetation, native forest trees and/or faster-growing biomass-producing species through 

application of cultural treatments (Evans et al., 2010; Fields-Johnson et al., 2008; Skousen et al., 

2009), but such conversions require investment.  Mined lands with soils that are not well suited 

for forest trees can become dominated by low-productivity woody vegetation including the 

invasive shrub autumn olive (Elaeagnus umbellate), which acts as an obstacle to conversion by 

increasing the cost of necessary cultural treatments (Burger et al., 2011).  
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Although numerous research studies have been conducted on individual or small numbers of 

mine sites, there is no unified database that documents the status of post-SMCRA mined lands, 

collectively.  Lack of knowledge about the extent and nature of the land resource base created by 

post-SMCRA coal mining is an obstacle to development of policies and strategies capable of 

improving the use and management of these lands.  The status of these previously mined and 

reclaimed lands, including current uses and vegetative cover, and their capability to serve as 

renewable natural resources is a natural resource management concern.  

Satellite-borne sensors are well suited to the task of characterizing the Appalachian mined 

land resource base.  Satellite imagery is used commonly for detecting and monitoring changes on 

the earth’s surface by providing consistent and repeatable measurements of land attributes.  They 

can be applied over time and without the cost and difficulty of obtaining legal access and 

physically visiting mined properties.  Images from the Landsat satellites have a spatial resolution 

adequate to locate mined lands and are multispectral – meaning that they detect surface-reflected 

radiation, both visible and non-visible, within several well-defined wavelength bands – which 

makes them well-suited for vegetation analysis.  Landsat imagery is available from a 37-year 

public-domain archive for no cost and without copyright restrictions.  We are developing 

Landsat data interpretation and analysis methods for potential use in characterizing the post-

SMCRA mined land base in Appalachia and its vegetation.   

Here, we report on studies intended to develop Landsat data interpretation methods that will: 

1. Identify reclaimed mined areas, by time of mining / reclamation and their spatial extent. 

2. Estimate woody canopy cover on these reclaimed mine areas.   

Methods 

Study area 

The study area encompasses the coal-mining areas in 4 counties of southwestern Virginia: 

Wise, Dickenson, Buchanan and Russell (Fig. 1). These areas are heavily surface mined.   
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Figure 1. The study area encompasses four counties of southwestern Virginia where coal mining 

is conducted.  

 

Objective 1: Identify reclaimed mined areas, by time of mining / reclamation and their spatial 

extent. 

Image and Ancillary Data. The dataset used for analysis consisted of 23 Landsat images 

(Table 1), all from WRS-2 path 18 row 34.  Best available leaf-on images for each year were 

chosen.  Two years (1992 and 1996) are missing because suitable cloud-free leaf-on images were 

not available.  All images used were acquired as level 1T product in a standard terrain-corrected 

form.  Co-registration was verified and radiometric and atmospheric corrections were done using 

the Landsat Ecosystem Disturbance Adaptive System (LEDAPS) routine (Masek et al., 2006).  

The LEDAPS surface reflectance product was used. Clouds and cloud shadows were visually 
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identified and eliminated from individual images by manual digitization.  Additional geospatial 

data were acquired for training and validation (Table 2). 

Table 1. Landsat image dates and assigned numbers in the chronosequence 

Image Date 
Chronosequence 

Number 
 Image date 

Chronosequence 

Number 

9/17/1984 1  5/19/1998 13 

9/20/1985 2  9/3/1999 14 

6/19/1986 3  6/9/2000 15 

6/6/1987 4  8/15/2001 16 

6/8/1988 5  5/22/2002 17 

6/11/1989 6  6/2/2003 18 

6/30/1990 7  9/24/2004 19 

9/21/1991 8  9/11/2005 20 

6/6/1993 9  7/12/2006 21 

8/28/1994 10  9/17/2007 22 

8/31/1995 11  9/3/2008 23 

9/5/1997 12    

Note: all images from Landsat Thematic Mapper (™) except 5/22/2002, from the Enhanced 

Thematic Mapper Plus sensor. 

  

Table2. Data sources used to develop training and validation points for objective 1. 

Type Data Source Dates 

Aerial photos 

Digital Ortho Quarter Quads 

(DOQQ) 

U.S Geological 

Survey (USGS) 

1996-1999 

National Agricultural Imagery 

Program (NAIP) 

U.S Department of 

Agriculture (USDA) 

2003, 2005, 

2008 

Virginia Base Mapping Program 

(VBMP) 

Virginia Geographic 

Information Network 

2002, 2005, 

2007 

Geospatial data 

layers 

Landuses, National Land Cover 

Dataset (NLCD) 

Multi Resolution 

Land Characteristic 

Consortium (MRLC) 

1992 and 

2001 

Road data Virginia Department 

of Transportation 

(VDOT) 

2000 
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Developing a Reclaimed Mine Classification Model.  The area’s primary landcover is forest, but 

numerous non-mining forest disturbances also occur, including industrial, commercial, and 

residential development, and transportation infrastructure.  We combined these non-forest non-

mining landuse types as a single class called “urban” for study purposes.  The study area 

contains little agriculture, and most of that which does occur is livestock grazing on reclaimed 

mines. 

We developed a classification algorithm in FORTRAN 95 to discriminate mined from urban 

and forested areas.  The algorithm operates by analyzing vegetation index (VI) data derived from 

the Landsat images for each discrete spatial unit as a multitemporal sequence.  A VI is a 

dimensionless radiometric measure that functions as an indicator of relative abundance and 

activity of green biomass (Jensen, 2000).  Mining disturbances are expected to have a 

multitemporal VI signature that represents a disturbance-recovery sequence (Fig., 2).  We 

hypothesized that mines can be discriminated from forests and from urban disturbances by three 

diagnostic parameters derived from the disturbance-recovery sequence:  

1. Disturbance Minimum (Dmin): Mining causes a sharp drop in VI due to vegetation removal.  

We expected the minimum VIs for mines to be lower than minima for less drastic forest 

disturbances such as fire and forest harvest; lower than the minima for many existing urban 

areas that retain vegetative cover (e.g. existing residential developments); and lower than for 

urban disturbances that did not fully remove vegetative cover over large, contiguous areas. 

2. Recovery slope (Rslope): On mine sites reclaimed under SMCRA, the VI was expected to 

exhibit a rapid increase after reclamation; this occurs in response to the SMCRA-mandated 

revegetation standards that require rapid establishment of vigorous herbaceous cover.  A 

mining recovery VI is expected to have steeper recovery slopes than most urban development 

because urban disturbance areas affected are usually not fully revegetated, and/or their 

vegetation is managed after establishment.  

3. Recovery Maximum (Rmax), the maximum VI value within a recovery period: Because 

vegetation typically develops rapidly, without management such as cutting or trimming, and 

over entire reclaimed mine areas, a diagnostic maximum value is reached or exceeded within 

a defined recovery period.  Urban development VIs are expected to remain generally at lower 
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levels, even after all construction and revegetation are completed, because only a portion of 

such areas are often revegetated and/or revegetated areas are  managed.   

 

 

 

 

 

 

 

 

Figure 2. (Left) Hypothetical disturbance-recovery sequence produced by mining and 

reclamation, contrasted to an urban disturbance and undisturbed forest; (Right) 

illustration of the diagnostic parameters used for automated discrimination of mining 

from other disturbances for the mining-reclamation-recovery process, with tm = period of 

mining disturbance and tr = diagnostic recovery period (7 images in our analysis): 

Dmin = disturbance minimum, Rmax = recovery maximum, and Rslope calculated 

through ordinary least squares regression of VI change (y/x) over the diagnostic recovery 

period.  Rmax is the maximum VI that occurs during period tr.  It may be the final value, 

as depicted here, or it may be an intermediate value if vegetation index peaks during an 

intermediate year. 

The algorithm detects the disturbance minimum and also the year in which the minimum VI 

value was reached.  This is considered to be the time of mining and is the point in time when the 

7-year recovery period is initiated. 

Testing the Classification Model. We executed several procedures to (1) determine which of the 

many vegetation indices that have been developed by various remote sensing studies over the 

years is best suited to our purposes, and (2) determine if the classification model is best applied 

on an individual pixel basis, or if a more effective procedure is to create and apply the 

classification algorithm to objects (i.e., groups of pixels that exhibit spectral similarities).  These 

studies, as detailed in Sen et al. (2011), found that (1) the tasseled cap greenness-brightness 

index (TC G/B) (Crist and Cicone, 1984; Powell et al., 2010) is an effective vegetation index for 

our purposes, and (2) creation and application of the classification model using various VIs with 
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objects produced more consistent and accurate classifications than did applying the model to 

individual pixels.  Therefore, we used the multiresolution segmentation algorithm within 

Definien’s Professional software (v 5.0, Definiens AG, München, Germany) to segment the 

Landsat images comprising our chronosequence into objects; we calculated an average TC G/B 

VI for each object within each image; and we tested the classification model’s capability to 

discriminate mines from urban and forested areas using the TC G/B values computed over the 

multitemporal image sequence for each object. 

To test the classification model, we developed training and validation data sets.  Using 

ancillary data (Table 2), a stratified random sampling procedure was used to select 1262 points 

that represent landcover classes within the cloud-free-image portions of our study area.  Mined 

areas were identified on DOQQ images and digitized to produce polygons; random points were 

generated within these polygons.  For urban and forest classes, random points were developed on 

the landcover base layer from NLCD 1992 and 2001.  Additional points representing roadways 

were generated from the GIS road layer acquired from Virginia Department of Transportation 

(VDOT); these were merged with the urban NLCD points to produce ‘urban’ training and 

validation points.  The training dataset was comprised of 650 points, while 612 points comprised 

the validation dataset.   

We analyzed the training dataset to develop diagnostic threshold for Dmin using the CART 

(Classification and Regression Trees; Salford Systems Inc., v.6.0) software and identified as 

“disturbed” points with VIs that dropped below the threshold.  A CART classification tree 

(parameters: Gini splitting rule, en-fold cross validation) was prepared to classify the “disturbed” 

class as either mined or urban, using all three disturbance/recovery parameters.  Then, we 

applied the classification model to the cloud-free-image sections of the study area using those 

threshold values.  Because the classification model required a 7-image recovery period, areas 

with post-2001 disturbances that fell below Dmin were classified as “post-2001 disturbances.”  

Using these procedures, areas that were cloud free over the entire chronosequence were 

classified as mined, urban, forest, or post-2001 disturbance.  Classifications for objects 

containing each validation point were then compared to those points’ actual landcover class and 

the classification model’s ability to correctly identify mined areas was assessed.  
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Objective 2: Estimate woody canopy cover on reclaimed mine areas. 

Objective 2 was pursued in cooperation with the USDA Forest Service (USFS).  Our method 

is based on a protocol being developed by USFS for estimating woody canopy cover at the 

national level. It is the USFS intent that this protocol would be applied in production of the next 

National Land Cover Database (NLCD, 2011).  Our study was a preliminary application of this 

protocol, testing its applicability over areas where mined lands constitute a significant fraction of 

the land base.  The protocol seeks to model woody canopy cover as a function of both spectral 

and non-spectral landscape variables. 

Model Development: Response Variable: The response variable was the percent woody canopy, 

which was developed by photo-interpretation of samples obtained using the same spatially 

randomized procedure that is being applied in other study areas of the NLCD 2011 effort.  The 

samples were obtained from a 4x intensified FIA sampling grid (Bechtold and Patterson, 2005), 

which is developed from the EMAP (Environmental Monitoring and Assessment Program) 

sampling framework (White et al., 1992).  Using this procedure, we located 547 photo-plots 

within the study area.  Each of these photo-plots had 105 points, spread over a 3x3 Landsat pixel 

window covering approximately 90m x 90m on the ground (Fig. 3).  These points were photo-

interpreted using the leaf-on National Agricultural Image Program (NAIP; USDA 2010) image 

from 2008. An ArcMap
TM 

(V 9.3.1, ESRI, Redlands, California, USA) extension “Canopy 

cover” was used to label each of the 57,435 points (i.e., 547 photo plots x 105 points per plot) as 

either “Canopy” or “Not Canopy”.  Each point was also labeled as “mine” or “not-mine”.  Based 

on these individual point classifications, each photo-plot was labeled as “mine” (if 100% mined), 

“non-mine” (if 0% mined) or “split-mine” (if partially mined).  In addition to the NAIP image, 

Digital Orthophoto Quarter Quads (DOQQ) from mid to late 1990s were used to cross-check the 

“mine” vs.  “not- mine” designations, checking for older mine areas which may have become 

obscured on the recent photos by post-mining vegetation development.  For each photo-plot a 

percent canopy was computed using canopy labels from the 105 points.  These percent canopy 

data were used as the response variable in the modeling procedure. 
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Figure 3.  Left: distribution of the photo-plots over the study area. Inset upper right: A partially 

mined photo-plot with 105 photo-points, before labeling. Inset lower right: Points 

within the photo-plot as labeled by “canopy” vs. “no canopy.”  A point is labeled “tree 

canopy” (meaning woody canopy in this usage) only if the precise point location falls 

directly on a piece of ground that is visibly covered by tree or shrub canopy in the aerial 

photo. 

 

Explanatory Variables. Fifty-five landscape variables were developed as potential explanatory 

variables for use in the canopy-cover estimation models (Table 3).  Most variables were 

specified for the entire study area in a separate geospatial data layer.  The photo-plot sampling 

points were then overlaid on each data layer, and the corresponding variable was specified for 

each photo plot using the “extract values to points” in the spatial analyst ArcMap
TM

 extension.  

Values were specified as both focal mean (the mean value for all raster grid-points within the 

photo plot, fcm) and focal standard deviation (the standard deviation for all raster grid-points 

within the photo plot, fst).  Data layers used to develop the explanatory variables included two 

recent Landsat images selected for image quality over the study area from among those 
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available, one during the leaf-on season and the other as leaf-off.  These images were 

downloaded in a level 1T terrain-corrected form, and were radiometrically and atmospherically 

corrected using the LEDAPS routine (Masek et al., 2000).  The resulting image is converted to 

surface reflectance and has substantial haze reduction.  Bands 1, 2, 3, 4, 5 and 7 were spectrally 

subsetted from this surface reflectance image.  Band 6, temperature, is obtained separately as a 

LEDAPS output in a brightness-temperature corrected form. Vegetation indices – the  

Normalized Difference Vegetation Index (NDVI; Rouse et al., 1973) and the three tasseled cap 

(TC) indices (band 1 - “brightness”,  band 2 - “greenness”, and band 3 - “wetness”); (Crist and 

Cicone, 1984), were calculated for both leaf-on and leaf-off images.   

 

Table 3. Detailed list of variables used in the model development process for Objective 2. 

Variable classes Variables 
Focal mean 

(fcm) 

Focal standard 

deviation (fst) 
Count 

DEM and DEM 

derivatives 

Elevation 

Aspect 

Cosine aspect 

Sine aspect 

√ √ 

4 x 2 

=8 

√ √ 

√ √ 

√ √ 

Landsat leaf-on 

(9/3/2008) 

 

Spectral bands 1,2,3,4,5,7 

Temperature band 

NDVI 

TC band 1 (Brightness) 

TC band 2 (greenness) 

TC band 3 (wetness) 

√ (6) √ (6) 

11 x 2 

= 22 

√ √ 

√ √ 

√ √ 

√ √ 

√ √ 

Landsat leaf-off 

(1/25/2009) 
Same as for leaf -on  

11 x 2 

= 22 

Non-image 

variables 

NLCD 2001 canopy cover  

NLCD 2001 landcover 

Number of mined points 

 

1 

1 

1 

TOTAL   55 
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Terrain data were obtained from Virginia Department of Mines, Minerals and Energy 

(VDMME) as vector (polyline) shapefiles representing elevation contours. VDMME personnel 

had derived the data from Virginia Base Mapping Program 2007 Orthophotography (VITA, 

2010).  These data are obtained and developed by Virginia DMME for the purpose of 

representing current contours of mined areas, which may differ from the pre-mining contours 

that are commonly represented by publicly available terrain data.  The polyline shapefiles were 

converted into a 30-m raster data layer.  Slope and aspect were calculated using the DEM raster, 

expressed as degrees.  Aspect values were transformed to radians; the sine and cosine aspect 

layers were computed from the transformed aspect.  

Focal mean and focal standard deviation were calculated for all geospatially derived data 

layers, using a 3x3 pixel window (~90m x ~90m). The 2001 NLCD canopy cover estimates and 

2001 classified landcover data were obtained from MRLC.  Anderson II classification scheme 

had been followed for the land cover classification.  The remaining variable, number of mined 

points within the photo plots, was recorded during the photo-interpretation process.  

Model Development. The 55 potential explanatory variables were reduced in number by 

assessing their inter-correlations.  A non-parametric correlation coefficient (Spearman’s rho) was 

computed for each variable pair.  For pairs with rho > 0.80, each variable of the pair was 

assessed for correlation to the response variable (percent canopy cover) and the less-correlated 

variable was removed from the variable list.  This process resulted in a set of 29 landscape 

variables, a subset of the original 55 variables (Table 3), for use in developing a woody canopy 

cover estimation model.  

A best subsets regression procedure was carried out in Minitab, as an effort to estimate 

canopy cover (the response variable) as a function of the landscape variables.  Using model 

selection criteria of high R
2
, high adjusted R

2
, low Mallow’s Cp statistic, and low standard 

deviation of prediction error, a preliminary canopy-cover estimation model with 14 explanatory 

variables was chosen as a basis for further work. 

The 14-variable model was further refined. Using this model, an analysis was conducted to 

identify extreme outliers in the sample.  The standard deviation (sd) of the residuals obtained 

from the best subset regression was 0.163. Using 2sd = 0.326 as the cut-off threshold, eight of 

547 photoplot samples were identified as extreme outliers.  These outlying data points were 
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excluded from further modeling procedures, reducing the sample size to 539.  Also, a decision 

was made to eliminate the NLCD 2001 canopy cover variable from further consideration because 

of its dependence on a result generated during an earlier time period.  This decision was made 

considering the dynamic nature of reclaimed mine landscapes, and our desire to ensure that rapid 

change in canopy cover, when it does occur, can be assessed by our procedures 

The remaining 13 explanatory variables and 539 sample points were used to produce a more 

parsimonious model by applying standard least-squares regression procedures in JMP (v. 9.0.0, 

SAS Institute Inc., NC, USA), using all 13 explanatory variables.  From the regression results, 

the six variables with most significant p-values were selected to construct the parsimonious 

model. 

Using those six variables only as explanatory variables and the 539 sample points, another 

multiple regression procedure was employed to evaluate the six variables’ significance and their 

coefficients.  That model’s potential applicability for use in estimating canopy cover for mined 

areas only was assessed by fitting the predicted percent-canopy values against the measured 

estimates for the mined points only. Based on this outcome, a final model with six explanatory 

variables was selected.   

Results and Discussion 

Objective 1  

Results: The three diagnostic parameters behaved as expected, with Dmin being generally lower, 

and Rslope and Rmax being generally higher for the mines than the urban category (Fig. 4).  

Although the mines’ mean and median Dmin values were lower than the urban disturbance 

values, the lower quantiles and minima were at comparable levels, demonstrating that some 

urban disturbances (large-scale land development and highway construction, for example) create 

significant surface disturbances similar to those created by mining, with all surface soils and 

vegetation removed, and therefore create a similar spectral signature during the maximum 

disturbance phase; but mines produce this high level of surface disturbance more frequently 

(Sen et al., 2011). 

Rmax and Rslope were generally higher for mines than for urban disturbances, a finding that 

we attribute to the extensive and rapid revegetation that is commonly required under SMCRA, 

but Rslope was found to give better discrimination than Rmax.  We attribute this latter finding to 
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the high level of image-to-image variance in the VIs spectral signatures; sources for such 

variance include seasonal differences among the image acquisition dates, year-to-year 

differences in moisture availability during the growing season, and image quality differences due 

to factors such as atmospheric conditions, solar and camera angles, and the like.  Because Rslope 

is computed across 7 consecutive images, it is less influenced by image-to-image variability than 

Rmax.  This interpretation is analogous to findings by Kennedy et al. (2007), whose studies 

revealed that analysis of data patterns derived from multitemporal image sequences can increase 

the accuracy of Landsat interpretations, compared to dual image comparisons, because 

multitemporal analyses are influenced less by image-to-image variance.  Of the three diagnostic 

parameters, no single parameter proved adequate when used alone to provide a high level of 

correct classifications, and all three parameters contributed to the final classification model. 

 

Figure 4. Training data distributions of the 3 diagnostic parameters for mined and urban classes. 

Box plots represent the 25th, 50th, and 75th percentiles of each distribution; the whiskers 

represent the 5
th

 and 95
th

 percentiles; and the horizontal lines represent means.  

The classification model was able to classify 89.1% of the validation points correctly, 

including 87.4% of the mined validation points (Table 4).  Using those classifications, a map of 
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mined and urban areas was produced for a portion of the study area (Fig. 5, upper right).  Years 

of mining were verified by a visual check using historical aerial photos and Landsat images and 

were found to be correctly identified in all the cases.  The area was also classified by the year of 

mining and a map of year of mining is represented for the same area in Fig. 5 (lower left). 

Table 4. Classification accuracies for 612 validation points. 

  Reference (validation) data   

    Mine 

Non-

Mine 

Reference 

Total 

User’s 

accuracy 

Classified data 

Mine 160 23 183 87.4% 

Non-Mine 44 385 429 89.7% 

Classified Total 204 408 612 89.1% 

 Producer’s accuracy    78.4% 94.4% 89.1%  

 

Discussion: Analysis of the incorrect classifications revealed some confusion between the urban 

and mined categories which upon investigation using the DOQQ and NAIP leaf-on aerial photos 

revealed that most mined areas incorrectly classified as urban were areas that were not well 

revegetated.  These included refuse piles that remain active, mined areas that remain in use for 

structures and/or for vehicular maintenance and for parking, and reclaimed areas that were not as 

well vegetated as other reclaimed areas (Fig. 6).  Some of these latter areas appeared to have 

near-level configurations, suggesting soil compaction created by vehicular activity as a possible 

cause for lack of vigorous revegetation.  This post-classification study of mis-classified mine 

areas also revealed that most (91%) were within or bordering other mined areas that had been 

classified correctly, suggesting that manual review of such mined-urban adjacencies could be 

employed as a means of increasing the accuracy of classification.  Similarly, most of the urban 

areas incorrectly classified as mines were “nested” within other correctly classified urban areas, 

suggesting that a manual review and error-checking of results should focus on such adjacencies, 

should this classification algorithm be placed into operational use.  
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Figure 5. (Left) an aerial photo (NAIP-2008) of a portion of the study area, located in Wise 

County, Virginia, (Upper-right) the classification map of that area produced by the 

classification model.  Note that several “pockets” of misclassified “urban” occurred 

within the extensive reclaimed mines for reasons described in the text. (Lower-left) 

classification map of mines categorized by date of mining, and of post-2001 disturbances 

by date of VI minimum. 
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Figure 6. Examples of mined areas that were not correctly classified due to lower Rslope and/or 

Rmax values than those which are characteristic of most reclaimed and revegetated coal 

surface mines. Left - a mined area used for mine-related activity (building, parking, etc.); 

Right - an area that is not as well vegetated (mine refuse). The black lines form the 

image-objects and the points are those used for validation purposes. 

 

Objective 2 

Results: The 14-variable model selected from the best-subsets regression results (Table 5) had an 

R
2
 of 0.63, adjusted R

2
 of 0.63, and Mallows Cp statistic of 3.8.  This model was selected from 

the 29 potential models generated by best-subsets regression because it had among the highest R
2
 

and adjusted R
2
 values, but with Mallows Cp and number of variables that were among the 

lowest, while having fewer significant explanatory variables than other potential models yielded 

by this procedure.  

A standard least-squares-regression canopy-cover prediction equation was generated using 6 

explanatory variables (Table 5).  The resulting model was fitted over the mined points, and the 

predicted vs. actual fit generated an R
2
 = 0.74 (Table 6).  However, the resulting plot showed that 

the model was predicting a wide range of canopy covers, including negative values, for mined 

photo points where actual canopy cover had been recorded as zero.  Thus, all negative canopy-

cover prediction values were manually adjusted to zero.  This manual adjustment improved the 

predicted vs. actual fit to R
2
 = 0.80 (Table 6).  The six-variable model (Table 5), applied with 
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manual adjustment of negative canopy-cover estimates to zero, is considered to be the final 

model (Fig. 7). 

 

Table 5. Lists of variables selected by best subsets regression for the 14-variables, and 

coefficients and coefficient significance for the final woody canopy cover estimation 

model. 

 

Variables in 14-variable 

Model  

Coefficient in 

Final Model
†
 

p-value in 

Final Model 

Cosine of aspect, fcm* - 0.03 0.0001 

Sine of aspect, fcm* - 0.01 0.0001 

2009 Landsat band 1, fcm   

2009 NDVI, fcm* + 0.5 0.0001 

2008 TC band 2, fcm   

2008 TC band 3, fcm* + 0.0005 0.0001 

2008 Landsat band 2, fst   

2008 Landsat band 3, fcm   

2008 Landsat temp, fcm   

2008 NDVI, fcm* + 0.52 0.0008 

2008 TC Band 3, fst* 

NLCD 2001 canopy cover 

- 0.0006 0.0021 

Number of mined points   

2009 TC band 2, fst   

† 
The final canopy-cover estimation model’s intercept is +0.15. It 

estimates woody canopy cover as a percent of total area. The final 

model’s application requires zero-adjustment of negative canopy-

cover estimates, as explained in text. * indicates variables chosen for 

a final parsimonious model. 
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Table 6. Results of final model (Table 5) development. 

 R
2 

Adj R
2 

RMSE 

Regression on all samples (539) 0.57 0.56 0.17 

Model prediction fit vs. actual on “Mine” 

samples (64) 

0.74 0.73 0.18 

Model prediction fit vs. actual on “Mine” 

samples (64) after zero adjustment. 

0.80 0.79 0.16 

Model prediction fit vs. actual on “Non-

mines” samples (64) after zero 

adjustment. 

0.44 0.43 0.18 

Model prediction fit vs. actual on “Split-

Mine” samples (64) after zero 

adjustment. 

0.41 0.40 0.16 

 

 

 

Figure 7. Model predicted canopy cover vs. actual before (left) and after (right) resetting all 

negative predictions to zero (“zero adjustment”), mined points only (64). 
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Discussion: The procedures described above were conducted with the intent of generating a 

canopy-cover estimation model that can be applied to both mined- and non-mined areas within 

our study region.  The outcome, however, did not support the potential for combined application, 

as the final model proved far more accurate when applied to mined areas only than when applied 

to a full data set comprised predominantly of un-mined areas (Table 6).  In a general sense, this 

result indicates that mined- and non-mined landscapes within the study region differ in their 

spectral and topographic characteristics, and/or the interaction of those characteristics.  The 

greater capability of the final model to discriminate canopy from non-canopy on mined areas 

may indicate that spectral differences between these two cover types are more distinct on the 

mined areas.  

The final model includes 6 explanatory terms that appear to us as potentially reflective of 

physical relationships with canopy cover, although documented and verified explanations for 

those physical relationships are not yet clear.  Two of these explanatory variables – the cosine 

and sine of aspect – reflect terrain. The cosine transformation of the aspect is a measure of the 

northness and the sine transformation of the eastness.  It is generally well known that woody 

vegetation characteristics (e.g., dominant species and/or vigor) are affected by aspect, and that 

north and east aspects are generally favorable.  

Four of the explanatory variables are spectral and all are derived from vegetation indices 

rather than raw spectral bands.  Both the NDVI and the TC band 3 (wetness) indices contributed 

one explanatory variable from both the leaf-on (2008) and the leaf-off (2009) image.  It is logical 

that leaf-on vegetation indices would contribute to woody canopy cover estimation. It is possible 

that the vegetation indices are producing greater distinctions between woody canopy and 

herbaceous vegetation for mined areas because the herbaceous-vegetation spectral signal 

includes greater influence by underlying soils and/or dead and dying leaf area tissue.  It is 

possible that the herbaceous vegetation and/or underlying soils of mined areas differ spectrally 

from those of unmined areas.  NDVI contrasts the difference between visible and near infrared 

reflectance with their sum, and therefore highlight areas of high green biomass.  It is possible 

that NDVI distinguishes well between herbaceous mined areas from the woody-canopy covered 

mines, since the background soil reflection is possibly greater in herbaceous vegetation.  TC 

band 3 or the wetness band has been shown to be sensitive to soil and plant moisture (Crist and 
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Cicone, 1984), and to be more responsive to the interaction of water content and the structure of 

canopy (Cohen et al., 1995). 

Two of the spectral explanatory variables are derived from leaf-off vegetation indices.  It is 

possible that these variables contributed to canopy-cover estimation because some of the woody 

canopy is coniferous, and thus influences the vegetation indices via contrast with other landscape 

features during the winter months.  It is possible that coniferous species constitute a larger 

fraction of total woody vegetation on mined than on unmined areas, and that this difference 

contributes to the improved performance by the 6-variable model on mined areas.  These 

potential explanations are described as “possible” because, although suggested by the authors’ 

considering our general knowledge of these systems, they have not checked or verified through 

analysis of field or photographic data. 

These results should be considered as preliminary.  Even so, we interpret these results to 

indicate that there is potential for use of Landsat imagery in characterizing mined lands’ woody 

canopy cover.  

Conclusions 

These results should be seen as the outcomes of early steps in a multi-year process.  We are 

confident in the procedure for identifying and aging mine sites; future work will focus on 

development of algorithms for bridging cloud-obscured areas in multiple-image sequences; and 

for interpreting the rate of spectral recovery after reclamation.  The preliminary woody canopy 

characterization model will be further refined and model development efforts will be validated 

against aerial photographs and/or independent datasets.  We are developing these methods, 

anticipating eventual application over pilot-study areas and more broadly. 

The post-SMCRA mined land resource constitutes on the order of 600,000 hectares in eastern 

USA’s Appalachian region.  Lack of knowledge about the extent and nature of the land resource 

base created by post-SMCRA coal mining is an obstacle to development of policies and 

strategies capable of improving its utilization.  The Landsat satellite multispectral data series is 

well suited to use in characterizing these land resources, due to its spatial resolution, extensive 

archive, low cost, and temporal extent.  Our studies have found that Landsat data can be used to 

identify post-SMCRA surface mines, by areal extent and by year of mining, using techniques 

with potential for application over broad areas.  These results also show promise for Landsat 
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interpretation techniques to characterize these lands’ woody canopy cover, an important indicator 

of ecological status and future use potentials on reclaimed coal surface mines. 
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