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Abstract.  Surface coal mining and reclamation methods in the Appalachians 

have changed dramatically since the passage of the Surface Mining Control and 

Reclamation Act (SMCRA) of 1977 and subsequent improvements in mining and 

reclamation technology. In this study, 30 pre-SMCRA mine soil profiles (4-20 yr 

old) were examined and sampled in 1980 and compared to 20 mine soil profiles 

(8-13 yr old) described in the same area in 2002 after it had been completely re-

mined by modern deep cut methods.  Mine soils in both sampling years had high 

rock fragment content (42 to 81%), relatively well-developed A horizons, and 

generally exhibited A-C, or A-AC-C horizonation. Although six Bw horizons 

were described in 1980, only two met all requirements for cambic horizons.  The 

1980 mine soils developed in overburden dominated by oxidized, pre-weathered 

material due to relatively shallow mining cuts. The 1980 mine soils had lower 

rock fragment content, finer textures, lower pH, and tended to be more 

heterogeneous in horizonation, morphology, and texture than soils observed in 

2002, which had formed primarily in unweathered overburden from deeper cuts.  

Half the pedons sampled in both years had densic materials within 70 cm of the 

surface. Four poorly to very poorly drained soil profiles were described in each 

sampling year containing distinct hydric soil indicators in surface horizons. While 

older pre-SMCRA mine soils do have many properties in common with newer 

mine soils, their properties are highly influenced by the fact that they generally 

have formed in more weathered overburden from higher in the geologic column. 

Overall, Appalachian mine soils are much more complex in subsoil morphology 

than commonly assumed, and differential compaction greatly complicates their 

internal drainage and limits their overall productivity potential.  

 

Additional Key Words: Pedogenesis, overburden, weathering, cambic horizon, 
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Introduction 

 

The passage of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) 

resulted in major changes in mining and reclamation methods used in Appalachian coal surface 

mining.  Before the mid-1970’s, the “shoot and shove” method was often used in contour 

mining. This resulted in an exposed highwall directly above a level to gently rolling bench 

covered with varying depths of blasted/bulldozed rocky spoils, and a steep outslope composed of 

spoils that had been bulldozed over the edge of the bench (Fig. 1a) over the pre-existing slope.  

No effort was made to control spoil composition, and the final surface on these areas consisted of 

a roughly graded, heterogeneous, mixture of all overburden strata (Daniels and Zipper, 1988).  

Native soil materials were seldom salvaged, and generally were either pushed over the outslope 

or randomly mixed with blasted rock spoils. Reclamation before 1977 was generally limited to 

liming and fertilization of the bench and outslope areas followed by planting erosion control 

forages and tree seedlings such as tall fescue (Festuca arundinacea shreb.) and white pine (Pinus 

Strobus L.)  Tens of thousands of ha of pre-SMCRA mined lands still exist in the Appalachian 

coalfields, and are generally designated as abandoned mined land (Johnson and Skousen, 1995).  

After passage of SMCRA and resultant state permanent regulatory programs, coal mined 

lands were mandated to be returned as close as possible to approximate original contour, 

including backfilling highwalls (Figure 1b). Since successful revegetation was rigorously 

required, either stockpiled natural topsoil, or a topsoil substitute, was placed at the final 

reclamation surface. Because the natural soils of the area are often thin, rocky, and infertile, and 

may have been removed in first-cut pre-1970’s mining, suitable overburden materials are usually 

employed as a topsoil substitute (Daniels and Zipper, 1988).  Modern mining regulations also 

require isolation of acid-producing pyritic (FeS2) materials below the final surface (Skousen et 

al., 2000).  

Many first-cut contour mines, particularly those excavated before the 1980’s, were relatively 

shallow (< 20 m) and the spoil produced contained a high percentage of oxidized pre-weathered 

materials.  Overburden materials that were formerly located near the surface of the geologic 

column were partially weathered in place, and thus were usually more oxidized, leached, and 

acidic due to stripping of carbonates and Fe-oxidation when compared with deeper strata.  These 

pre-oxidized zones were recognized by  Grube et al.  (1982)  who  presented  data  indicating that  
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Figure 1. Typical landforms created in the Appalachian coal region by surface coal mining 

activities before (1A) and after (1B) passage and implementation of the Surface Mining 

Control and Reclamation Act of 1977.  Mining before SMCRA was generally smaller in 

scale and mining cuts excavated a higher proportion of pre-weathered, leached and oxidized 

strata. Post-SMCRA mines are generally much larger in extent and take deeper cuts into 

more reduced geologic strata.  
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this weathered zone extended from 6-12 m below the soil surface in northern West Virginia and 

Southern Pennsylvania.  The existence of this oxidized zone has also been well- documented by 

researchers studying acid-base accounting, which is the most commonly utilized method for 

determining the acid and alkaline-producing potential of overburden prior to disturbance (Sobek 

et al., 2000).  Weathered, oxidized overburden can generally be identified by soil color chromas 

≥ 3 due to secondary Fe-oxides and usually contain little reactive pyrite.  

The overall post-mining landforms generated by pre-SMCRA mining in the Appalachians 

were dominated by long sinuous and relatively narrow flat benches and associated highwalls 

(Fig. 1a) which commonly continued on contour for many km. Multiple mining benches were 

common on many ridges, and it was not unusual to have two benches so close to one another that 

the outslope spoils from one bench continued down onto an immediately adjacent bench below, 

leaving isolated islands of natural soil and undisturbed vegetation between.  As mining 

technology improved through the 1980’s, new areas on steeper slopes were mined for the first 

time, and many older mined areas have been extensively remined.  Current Appalachian surface 

mine operators take wider and deeper cuts into unweathered overburden over much larger areas 

than were commonly mined before the 1980’s.  The overall post-mining landscape contains 

significant areas of steeply sloping highwall backfills and hollow fills, but may also contain large 

expanses of relatively flat or gently rolling areas where spoils are returned over the older benches 

associated with previously mined areas (Fig. 2).  Since a greater percentage of the overburden in 

modern mining comes from deeper in the geologic column (Fig. 1B), the resulting spoil materials 

frequently consist primarily of unweathered and unoxidized materials. These overburden strata 

and resultant spoils usually have an initial chroma of ≤ 2.5 due to their reduced nature.  In 

southwestern Virginia, these unweathered strata commonly contain significant amounts of 

carbonate cementing agents (Howard, 1979), but may also contain some reactive pyrite (Sobek et 

al., 2000). In southwestern Virginia, the pH of unoxidized overburden materials commonly falls 

between pH 6.5 and 8.0 (Roberts et al., 1988), while that of pre-oxidized and leached materials is 

between 4.5 and 6.0.  Pyritic overburden materials, where present, commonly generate post 

placement soil pH values of < 4.0 (Daniels and Amos, 1981).   

Several researchers have documented the properties of mine soils after surface coal mining in 

the Appalachian region. Appalachian mine soils typically have a high (35 to ≥ 70%) rock 

fragment content (Pedersen et al., 1980; Ciolkosz et  al, 1985;  Thurman  and Sencindiver, 1986,  
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Figure 2. Appalachian coal mined landscapes of varying ages and mining methods 

in Wise County, Virginia. The active mine in the center of the photo is a 

conventional contour haul-back operation where the highwalls are backfilled to 

approximate original contour (AOC) with excess spoil disposed of in valley fills. 

The older pre-SMCRA mines in the immediate foreground and the background date 

to the 1960’s and early 1970’s and are clearly recognizable due to many linear km 

of exposed highwalls. Photo by Carl Zipper.  

 

Roberts et al., 1988), low clay contents, and often have highly variable chemical properties 

(Roberts et al. 1988).  In a different mining environment, researchers working on prime farmland 

soils in the Midwest have noted that mine soil properties such as texture, color, and subsurface 

pH are generally inherited from overburden type, while attributes such as bulk density and 

drainage class result from the reclamation method used (Indorante et al., 1992).  Sencindiver and 

Ammons (2000) report similar overall relationships between overburden type and Appalachian 

mine soil properties.  

Mine soils commonly have A-C, or A-AC-C horizonation (Sencindiver and Ammons, 2000), 

and A horizons have been observed to form rapidly in mine soils.  Roberts et al. (1988) found 
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that weak A horizons characterized by spoil loosening and aggregation formed in southwestern 

Virginia mine soils after approximately 1 year. After 3 years, 5-6 cm deep A horizons 

characterized by weak granular or subangular blocky structure and darkening as a result of 

mixing of organic matter had formed. In the same mine soils after 8 years, A horizons were 5-11 

cm thick  (Haering et al., 1993).  Ciolkosz et al. (1985), in a study of non-topsoiled Pennsylvania 

mine soils of various ages, estimated that it took approximately 3-13 years to form A horizons. 

However, they described at least one A horizon in a 1-yr-old mine soil.  Thomas et al. (2000) 

found that A horizons had formed in 2 years in reclaimed West Virginia mine soils. In an 

unpublished study in Pennsylvania (reported in Sencindiver and Ammons, 2000), A horizon 

depth in a mine soil chronosequence in similar overburden materials appeared to be controlled by 

mining and reclamation methods rather than mine soil age.  In southwest Virginia mine soils, AC 

horizons formed within 8 years, and typically exhibited weak structural development, increased 

rooting relative to the C horizons, and were slightly darkened due to organic matter translocation 

and/or rhizodeposition (Haering et al., 1993).  Ciolkosz et al. (1985) estimated that distinct AC 

horizons usually formed in 6-20 yrs in Pennsylvania.   

Cambic (Bw) horizons also have been described in Appalachian mine soils (Ciolkosz et al., 

1985; Haering et al. 1993; Thomas et al., 2000), and some have met the requirements for cambic 

horizons.  The cambic requirements that pertain to mine soils are (1) a depth > 15 cm in 

thickness; (2) soil structure or the absence of rock structure present in more than half the volume, 

and (3) higher chroma, higher value, redder hue, or higher clay content that the underlying 

horizon or an overlying horizon (Soil Survey Staff, 1999).  Ciolkosz et al. (1985) described Bw 

horizons in 10 out of 24 pedons of Pennsylvania mine soils with ages ranging from 3-yr-old to 

29-yr-old. Although all 10 of these Bw horizons met the structure and thickness requirement for 

cambic horizons (15 cm), only 5 of these Bw horizons also met the cambic color requirement.   

Despite these published observations of Inceptisols occurring in mine soil landscapes, all 

established soil series for Appalachian mine soils are classified as Entisols.  

In this study, we compared mine soils described and sampled in 1980 that resulted from pre-

SMCRA mining techniques to much newer mine soils forming in the same area after it had been 

re-mined. The objectives of this study were (1) to compare and contrast mine soil horizonation, 

morphology, physical properties, and pH in both ages of mine soils and (2) to determine the 
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effect of overburden type, overburden weathering, and reclamation method on these mine soil 

properties.    

 

Materials and Methods 

 

The study area was located on the Powell River Project Education Center, about 11 km 

northwest of Norton, in Wise County, VA. The headwaters of the Powell River bisect the 

original (1980) study area (Fig. 3) and elevations of the benches studied range from 785 to 880 

m.  Local relief is > 200 m, average slopes are generally > 35%, and most natural soils are well 

to excessively drained.  Dominant native soil series include Jefferson (Fine-loamy, siliceous, 

semi-active, mesic Typic Halpludults) and Dekalb (Loamy-skeletal, siliceous, active, mesic 

Typic Dystrudepts) soils.  The climate is humid temperate with an average precipitation of 

approximately 125 cm which is evenly distributed seasonally. The native vegetation in unmined 

areas is mixed native hardwoods. Reclaimed surface mined benches and backfills are dominated 

by tall fescue, sericea lespedeza (Lespedeza cuneata L.), and other herbaceous revegetation 

species along with common woody species such as white pine, black locust (Robinia 

pseudoacacia L.) and red maple (Acer rubrum L.). The bedrock underlying the area is of 

Pennsylvanian age, and is composed of horizontally bedded sandstone, siltstone, shale and coal 

beds of the Wise formation (Nolde et al. 1986). The majority of strata are cemented by a 

complex of carbonate, Fe, and silica intergranular cements, and are generally low in pyritic-S, 

although acid-forming materials are present in some strata below and between coal seams.  

Mine soils of the area were described and sampled in both 1980 and 2002. The study area 

was extensively mined between the late 1950’s and 1977, and the 30 soil pits examined in 1980 

were distributed across four mining bench levels (Fig. 3). These benches were associated with 

the Upper Standiford (or Wilson), and Lower Standiford, Taggart and Taggart Marker, Low 

Splint, and Phillips coal seams (Brown, 1952). These areas had been contour mined before the 

passage of SMCRA, and the contour cuts resulted in a highwall-bench-outslope landform as 

depicted in Fig. 1A.  Prior to description and sampling in 1980, the mine soils on these four 

benches were sampled at 245 randomly distributed points (Daniels and Amos, 1981). Thirty 

backhoe pits were then excavated in 1980 in typifying locations determined from the random 

sampling data and other field observations.  Mine soils were described using existing Soil Survey  
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Figure 3. Location of the Powell River Project study area in Wise County, Virginia. 

Boundaries of detailed mine soil mapping areas are designated along with mine soil 

study pit locations for 1980 and 2002 studies and sampling.  
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Manual (Soil Survey Staff, 1962) procedures, but have been updated with current horizon 

designations (Soil Survey Division Staff, 1993).  Of the 30 mine soil profiles, 20 were 4-yr-old, 4 

were 8-yr-old, 4 were 12-yr-old, and 2 were 20-yr-old.  All mine soils were sampled on 

relatively flat to strongly rolling benches with overall slopes < 20%. 

Between 1980 and 2001, large sections of the research area were remined using second-cut 

contour mining methods and were then reclaimed in accordance with SMCRA. Return to 

approximate original contour was accomplished by highwall backfilling and valley fill 

construction (Figs. 1 and 2). Due to extensive re-mining in the area, none of the 1980 landscapes 

existed intact at the time of the 2002 soil investigations. However, approximately one-third of the 

mine soil landscape described in 2002 overlapped with the 1980 study area, but the original 1980 

benches had been completely removed.  Typifying pedon locations of the mine soils examined in 

2002 were determined by USDA-NRCS personnel, who had mapped the area at a working scale 

of 1:6000 during the fall of 2001 (Haering et al., 2003).  Twenty pits were dug by backhoe and 

described using Soil Survey Manual methods (Soil Survey Division Staff, 1993) on rolling 

portions of the landscape with slopes < 20%.  Fourteen of the 20 pits examined in 2002 were 

located on reclaimed areas where the Taggart and Taggart Marker coal seams had been remined, 

and six were located on remined areas of the Low Splint Bench (Fig. 3). These areas had been 

mined in the late 1980’s and early 1990’s and were reclaimed in 1989/90 (Taggart), and 1993-

1994 (Low Splint); thus mine soils described in 2002 study were 8 to 13-yr-old.  Eight of the 

2002 profiles had been treated with a composted-wood chip/biosolids mixture as a surface 

amendment in 1980/81 (Daniels and Haering, 1994), which was incorporated to approximately 

15 cm.  

Large samples (2 to 5 kg) of each horizon were taken for analysis. The soil was air-dried, 

gently crushed when necessary, and sieved through a 2mm (10 mesh) sieve. In 1980, large 

samples (3 to 5 kg) of each horizon were sieved in the field to determine the approximate weight 

percentage of rock fragments ≥ 75 mm. Content of fragments <75 mm was determined in the lab.  

In 2002, total rock fragment content and relative percentages of gravels, cobbles, stones and 

boulders were visually estimated in the field (Soil Survey Staff, 1993).  Field rock fragment 

volume estimates were converted to weight estimates (method 3B1, USDA-NRCS, 1996). 

Percent of small gravel (≤ 20 mm) content was also quantified in the laboratory by sieving and 

weighing the 2 to 5 kg samples.  However, very large (approximately 60 kg) samples are 
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required to accurately measure the percentage of rock fragments between 25 and 75 mm, and 

visual estimates are recommended for determining percentage of rock fragments > 75 mm (Soil 

Survey Staff, 1993; USDA-NRCS, 1996).  Therefore, we did not attempt to statistically compare 

the values for 1980 vs. 2002 whole soil rock fragment contents due to differences in their 

determination, and due to the uncertainties in accurate estimation. They are reported and 

discussed qualitatively, however.   

Particle size analysis was performed on all samples by the pipette method using oven-dry 

samples (Method 3A1: UDSA-NRCS, 1996).  Prior to particle size analysis, organic material 

was removed from A horizons by pretreatment with H202. Soil pH was determined in a 1:1 water 

slurry (Thomas, 1996).  Bulk density on selected horizons from the 1980 sampling was 

determined by the saran clod method (Method 4A1: USDA-NRCS, 1996). 

The mine soil profiles were divided into two sections for statistical comparison: the 0-25 cm 

surface layer and the particle size control section (25-100 cm., or 25 cm to rock contact if 

shallower than 100 cm).   For the purposes of this study, densic materials were included in the 

analyses of the 25 to 100 cm section. The particle size control section for Entisols/Inceptisols 

was chosen because all these mine soils would be mapped as Udorthents according to the 

established mine soil series currently being used in southwest Virginia.  Four shallow (depth to 

rock ≤ 50 cm) mine soils described in 1980 were excluded from statistical comparisons.  

Weighted averages for selected soil properties were calculated by multiplying the value for 

each parameter, by horizon, by thickness (cm). These values were then summed and divided by 

the total depth sampled in each profile. Mean weighted averages were then determined by 

summing weighted averages for each profile examined by year (n=30 for 1980 and n=20 for 

2002).  The mean weighted averages of various parameters were compared using both a Mann-

Whitney test and an approximate 2-sample t-test (Minitab, 2000) for different sampling years, 

and a paired t-test (Minitab, 2000) for depth contrasts within the same year.  The Mann-Whitney 

non-parametric contrast compares median values of test parameters, and was used initially for 

comparing data from sampling years due to small sample sizes (n=20 to 26). The approximate 2-

sample t-test was also used to compare parameter means, and we found the results were identical 

to the results of the non-parametric test at p < 0.05. Mean contrasts for various soil parameters 

between sampling years reported in the text therefore reflect results of both the Mann-Whitney 
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test and the approximate 2-sample t-test, while mean depth contrasts within years are the results 

of the paired t-test. 

 

Results and Discussion 

 

Overall Mine Soil Properties 

Sencindiver (1977) and other West Virginia University researchers (Sencindiver and 

Ammons, 2000) have defined a set of mine soil properties that can be used for the establishment 

of diagnostic criteria for their classification.  Some of these properties are disordered rock 

fragments, color variegations not associated with horizon formation or redoximorphic processes 

(often described as lithochromic mottling), splintered or sharp edges on rock fragments, bridging 

voids, and carbolithic rock fragments. All of the profiles we examined in both 1980 and 2002 

had at least three of the above properties. Horizontal layering of differing spoil types was 

common and was observed in 8 out of 30 of the 1980 profiles (see Profile 1980-1 in Table 1 for 

example) and in 9 out of 20 of the 2002 profiles. Twenty-one of the 1980 profiles, and all but 

one of the 2002 pedons had common lithochromic mottling in at least one horizon (see profiles 

1980-2 and 2002-1).  Differences in color in horizons below the A or AC horizons were likely a 

result of this spoil layering rather than pedogenic processes. 

Since the area studied in 1980 was mined before the advent of current reclamation standards, 

careful overburden handling and placement strategies were not employed. The strata removed 

during mining were transported laterally as well as downward, resulting in very heterogeneous 

mine soils of widely varying depth.  As examples of the variation in gross mine soil properties 

found on the pre-SMCA landscape, three of the 1980 pedons had surface horizons formed in 

pure siltstone overburden materials that formed a hard vesicular crust (for example, profile 1980-

1 in Table 1), while two shallow soils contained intact low-grade coal seams within 30 cm of the 

surface, and siltstone bedrock was encountered at 37 cm in another soil.  Profile 1980-2 (Table 1) 

was the deepest of the shallow (< 50 cm) soils described in 1980.  However, the vast majority of 

soil profiles described in 1980 were deeper than 1 m to intact bedrock.  

Due to the relatively shallow depth of earlier mining operations, the mine soils examined in 

1980 contained a high percentage of oxidized overburden, as was evident from relatively high 

chroma (≥ 3) colors in the majority of the soils.  Brown oxidized sandstone was the predominant  
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Table 1. Profile descriptions of four mine soils sampled in 1980 and 2002.   

   

Horizon Depth Description 

 -cm-  

Profile 1980-1 
 

A 0-11 Dark grayish brown (10YR 4/2) gravelly loam; weak fine subangular blocky structure; 

friable; common fine roots; 20% rock fragments (sandstone and siltstone); 5% carboliths; 

strongly acid (pH 5.5); clear smooth boundary. 

 

2Cd 11-46 Dark gray (10YR 4/1) gravelly silt loam; massive; very firm; few fine roots along coarse 

fragment faces; 12% rock fragments (sandstone and siltstone); 6% carboliths; extremely 

acid (pH 4.4); clear wavy boundary. 

 

3C 46-

100+ 

Dark gray and yellowish brown (10 YR 4/1 and 10YR 5/6) 

very cobbly sandy loam; structureless; firm; no roots; 34% 

rock fragments (sandstone); 1% carboliths; very strongly acid 

(pH 4.7). 

 

  Notes: This mine soil on the Low Splint bench was described in fall 1980. Slope was 3% 

and vegetation was a sparse stand of sericea lespedeza [Lespedeza cuneata (Dum. Cours.) 

G. Don]. The A horizon in this soil was essentially a thick vesicular crust, while the 2Cd 

horizon severely limited effective rooting depth. 

 

Profile 1980-2 
 

A 0-6 Dark grayish brown (10 YR 4/2) very cobbly silt loam; weak very fine to fine subangular 

blocky structure; very friable; few coarse and common fine roots; 57% rock fragments 

(siltstone and shale); <1% carboliths; medium acid (pH 5.75); abrupt smooth boundary.  

 

Bw 6-19 Yellowish brown (10YR 5/4) very cobbly loam; weak to moderate medium and fine 

subangular blocky structure; areas of both firm and friable consistence; common fine 

roots; 43% rock fragments (siltstone); <1% carboliths; very strongly acid (pH 5.0); clear 

smooth boundary. 

 

C 19-47 Yellowish brown (10YR 5/6) to brownish yellow (10YR 6/6) cobbly loam, with common 

coarse gray (10YR 5/1) lithochromic color variegations; massive; firm; few fine roots; 

48% rock fragments (sandstone and siltstone); <1% carboliths; strongly acid (pH 5.3); 

abrupt smooth boundary. 

 

2R 47-70+ Gray (10YR 5/1) sandstone bedrock 

 

  Notes: This shallow soil on the Low Splint bench was described in fall 1980. Slope was 

2-3%, with a moderately thick stand of red clover (Trifolium pratense L.) and tall fescue 

(Festuca arundinacea Schreb.) A Bw horizon was described because structural 

development in the B horizon was much stronger than that in the A or C horizons, but 

this horizon does not meet the thickness requirement for a cambic horizon. The C horizon 

described here contains a pocket of sandier material, one of many which occurred along 

the pit wall.  
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Table 1. (continued)  Profile descriptions of four mine soils sampled in 1980 and 2002.   

   

Horizon Depth Description 

 -cm-  

Profile 2002-1 
Ag 0-14 Dark gray (10YR 4/1) very gravelly sandy loam, with 10% strong brown (7.5 YR 5/8) Fe 

masses and 2% dark yellowish brown (10YR 4/6) Fe concentrations as pore linings, and 

common yellowish brown (10YR 5/8) and olive yellow (2.5 Y 6/6) lithochromic color 

variegations; weak medium subangular blocky structure; friable; 44% rock fragments (65% 

gray sandstone, 20% brown sandstone, 10% gray siltstone, 5% carboliths); many medium, 

fine, and very fine roots; slightly acid (pH 6.5); clear wavy boundary. 

 

Cg 14-44 Gray (10YR 5/1) and dark grayish brown (10YR 5/2) extremely gravelly sandy loam, with 

15% yellowish brown (10YR 5/6 and 5/8) Fe concentrations and 5% gray (10YR 6/1) Fe 

depletions as masses and pore linings, and few brownish yellow (10YR 6/8) lithochromic 

color variegations; mainly massive with pockets of weak medium subangular blocky 

structure; firm; 77% rock fragments (65% gray sandstone, 20% brown sandstone, 10% gray 

siltstone, 5% carboliths); common fine and very fine roots; slightly alkaline (pH 6.5); 

gradual wavy boundary.  

 

Cdg 44-

120+ 

Dark grayish brown (10YR 4/2) extremely gravelly loam, with 5% strong brown (7.5 YR 

4/6) and 2% weak red (2.5YR 4/2) Fe concentrations as masses and pore linings;  massive; 

very firm; 81% rock fragments (65% gray sandstone, 20% brown sandstone, 10% gray 

siltstone, 5% carboliths); few very fine roots along rock faces in upper part of horizon; 

slightly acid (pH 6.5. ) 

 

  Notes: This mine soil was described in spring 2002 on a nearly level (3% slope) portion of 

a reclaimed pasture area on the Taggart Bench. Vegetation included rushes (Juncus sp.) and 

sedges (Carex sp.) The pit area was ponded, and the pit required pumping so that it could 

be described. The soil was judged to be very poorly drained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Wet mine soil in 1980. Subsoil was highly 

compacted and perching this saturated zone above 

approximately 20 m of unconsolidated spoil fill. 
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Table 1. (continued)  Profile descriptions of four mine soils sampled in 1980 and 2002.   

   

Horizon Depth Description 

 -cm-  

Profile 2002-2 
Ap 0-7 Very dark brown (10YR 2/2) very gravelly loamy sand; weak fine granular structure; very 

friable; 55% rock fragments (70% gray sandstone; 10% brown sandstone, and 20% river 

gravels and other non-native rocks added with biosolids); many fine and very fine roots; 

moderately acid (pH 6.0); clear wavy boundary. Marks from chisel plowing in 1989 are 

clearly visible, and the depth of this horizon varies from 2 to 15 cm below the surface.  

 

AC 7-19 Dark grayish brown (10YR 4/2) extremely gravelly loam; mainly weak fine subangular 

blocky structure with structureless massive in in parts; firm; 77% rock fragments (65% gray 

sandstone, 30% brown sandstone; 5% carboliths), common to few fine and very fine roots; 

neutral (pH 7.3); clear smooth boundary.  

 

Cd 19-35 Dark gray (10YR 4/1) extremely stony sandy loam; structureless massive; very firm; 85% 

rock fragments (75% gray sandstone, 15% brown sandstone; 10% carboliths); few fine and 

very fine roots along rock surfaces; moderately alkaline (pH 8.3); clear smooth boundary. 

 

C 35-

130+ 

Very dark gray (2.5Y 3/1) extremely bouldery sandy loam; structureless massive; very 

friable; 91% rock fragments (85% gray sandstone, 10% brown sandstone, 5% carboliths); 

few fine and very fine roots along rock surfaces in upper part of horizon; strongly alkaline 

(pH 8.5); common large (20-30 cm) bridging voids.  

 

  Notes: This pedon was described in spring 2002, and was located in a nearly level 

(approximately 2% slope) portion of a reclaimed pasture area on the Taggart Bench on 

which a composted wood-chip/biosolids mixture had been applied in 1989 and incorporated 

by chisel plowing. Vegetation consisted of a closed stand of mixed forage species.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Photo of pedon 2002-2 
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(>65%) rock fragment type in seven of the 1980 mine soils, and at least 35% oxidized brown 

sandstone was found in 14 more profiles. Only 4 out of the 30 profiles described in 1980 were 

dominated by gray unoxidized (chroma ≤ 2.5) sandstone and/or siltstones. In contrast, the 

predominant rock fragment type in half of the 20 mine soils we described in 2002 was gray 

unoxidized sandstone (e.g. profiles 2002-1 and 2002-2 in Table 1) and at least 35% gray 

sandstone was found in six of the remaining profiles, while brown oxidized sandstone was the 

predominant rock fragment type in only four of the 2002 profiles.  

The area studied in 2002 was reclaimed with rock spoil materials that had been designated as 

a suitable blasted overburden derived topsoil substitute, resulting in good vegetative cover 

throughout. Almost all of the overburden produced in this mining operation was suitable for use 

as a topsoil substitute. Thus, there was no effort made to segregate and spread designated strata 

at the final reclamation surface, although attempts were made to bury the limited (< 5%) amounts 

of acid-forming materials encountered.  Overall, the mine soils we described in 2002 had much 

more uniform horizonation, particle size, and morphology than those we examined in 1980, 

although some of the individual profiles we examined contained obvious mixing and layering of 

unoxidized and oxidized spoil types. All the soils described in 2002 were ≥100 cm in depth.  

 

Rock Fragment Content and Soil Texture  

Mean weighted volumetric rock fragment content for both the 1980 (42%) and 2002 (81%) 

pedons fell within the 35 to ≤70 % range reported previous studies on Appalachian mine soils 

(Pedersen et al., 1980; Ciolkosz et al, 1985; Thurman and Sencindiver, 1986, Roberts et al, 

1988). Rock fragment content in both the upper 25 cm and the particle size control section of the 

1980 pedons appeared to be lower than that of the corresponding depths in the 2002 pedons 

(Table 2). However, the 1980 rock fragment estimates were based primarily on lab sieving, and 

do not accurately reflect the occurrence of larger cobbles, stones, and boulders in the actual field 

pedons. Other researchers (Ciolkosz et al. 1985) have reported that surface horizon rock 

fragment contents are lower in minimally reclaimed mine soils such as the 1980 soils in this 

study, and have attributed this to physical weathering, but we could not confirm this. However, 

physical decomposition and slaking of surface rock fragments, particularly in brown, pre-

weathered sandstones, and in fissile siltstones and shales,  was  readily  observable  in  both 1980  
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Table 2.  Soil pH, particle size analysis, and rock fragment content in the upper 25 cm of the 

1980 and 2002 mine soil pedons, and in the particle size control section (25-100 cm, or 25cm to 

bedrock, if less than 100 cm deep) of the 1980 and 2002 mine soil pedons. Shallow and very 

shallow (<50 cm) soils were excluded.  

 

       

  __Rock Fragments_ ____Sand____ ____Silt____ ___Clay___ ____pH____ 

Year Pedons Mean SD Mean SD Mean SD Mean SD Mean SD 

  ---------------------------------%------------------------------------   

0-25 cm section 

1980 26 42 14.0 47a*† 16.7  37a† 12.2 15a† 5.0 5.56a 0.76 

2002 20 68† 7.7 62b  9.7 30b 7.0    8b† 3.3 6.61b 0.96 

Particle size control section 

1980 26 45 16.8 53a 14.6 33a 14.6 14a 4.0 5.59a 0.91 

2002 20 85 6.0 59a 8.5 31a 8.5 10b 2.8 6.81b 1.56 

*means followed by the same letter in columns within depth sections are not significantly 

different (α = 0.05) 

† means for the 0-25 cm. section followed by this symbol are significantly different (α = 0.05) 

from particle size control section means for the same sampling year. 

  

 

and 2002.  In previous studies within the same research area (Roberts et al., 1988; Haering et al., 

1993), we have observed a reduction in rock fragment content with time in the 0-5 cm layer of 

mine soils forming in the same overburden, but this reduction was confined to the near-surface (0 

to 15 cm) horizons.  In the 2002 pedons, however, the rock fragment content of the surface 

horizons (0 to 25 cm) was significantly lower than the rock fragment content in the 25 to 100 cm 

zone (Table 2). While some of this may be due to surface weathering, it may also be the result of 

mechanical grinding of surface spoils by dozers and graders when constructing the final surface.  

Twenty-two of the pedons examined in 1980, and all of the soils examined in 2002 fell into 

the loamy-skeletal particle size family (Table 2), even though actual volumetric rock fragment 

content was likely underestimated in the 1980 pedons as discussed earlier.  The 1980 pedons 

contained significantly more clay in the particle size control section than the 2002 pedons, and 

the upper 25 cm of the 1980 pedons contained significantly less sand and more clay and silt than 

the 2002 pedons (Table 2).  Since the parent material overburden of the 1980 soils contained a 

high percentage of pre-weathered sandstones and siltstones, the initial rock fragment and particle 

size distribution of mine soils forming in that overburden would be expected to be finer, and 

these materials would also be more prone to rapid pedogenic weathering of the coarser fractions 
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into finer textures.  Dominant textures in both sampling years were sandy loam/loam, although 

four mine soils with silt loam textures throughout the profile were described in 1980 in pure 

siltstone/shale overburden materials.  

Comparison of the upper and lower profile sections within years indicates that the upper 25 

cm of the 1980 soils had significantly less sand, and more silt+clay than the deeper particle size 

control section (Table 2).  In contrast, the upper 25 cm of the 2002 soils did not differ in  sand 

from the underlying particle size control section, so we are unable to draw any firm conclusions 

about preferential weathering or translocation of <2mm particles in the surface horizons of these 

mine soils. It is likely, however, that <2mm particles in the surface horizons of mine soils formed 

in oxidized, pre-weathered, material, would be more subject to pedogenic weathering over time 

than those of mine soils formed in unoxidized material from lower in the geologic column due to 

their lower degree of intergranular cementation from long-term carbonate dissolution and Fe-

oxide formation (Daniels and Amos, 1981). 

Overall, the 1980 pedons contained fewer rock fragments and finer textures than the pedons 

sampled in 2002. The higher percentage of rock fragments and coarser textures in the 2002 

pedons reflect the fact that improvement in mining methods and efficiency over the years 

allowed mining companies to remove coal from deeper cuts into unoxidized and physically 

harder portions of the geologic column.  

 

Mine Soil Acidity 

Mine soil pH (reaction) is a property inherited directly from overburden parent materials, and 

can vary widely depending on the amount of acid-producing or acid-neutralizing material present 

in the parent material overburden.  Oxidized, pre-weathered, overburden strata generally contain 

very little oxidizable pyrite, but may also be leached of carbonates (Sobek et al., 2000). In prior 

studies within the same watershed, Roberts et al. (1988) and Haering et al. (1993) found that 

mine soils forming in partially oxidized sandstone overburden had an initial surface pH of 5.5, 

whereas mine soils forming in unoxidized sandstone and siltstone overburden had an initial pH 

of 7.5.   Mean soil pH of both depth sections of the 1980 pedons was significantly lower than the 

corresponding soil depths in 2002 (Table 2).  We attribute this to the higher proportion of pre-

oxidized and weathered parent materials of the 1980 pedons. However, soil pH did not vary with 

depth in either 1980 or 2002.  Average surface and subsurface pH varied widely in both years. It 
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was not unusual to find extremely acid (pH 3.5-4.4) soils within several meters of moderately 

alkaline (pH 7.9-8.4) soils. Although the overburden of the area was not typically acid 

producing, there was some acid-forming material associated with the Standiford interburden and 

underclay below the Low Splint coal. Relatively small amounts of this acid-forming material 

within a profile could lower the pH dramatically. For example, 2002 soil horizons formed 

primarily in unoxidized gray sandstone exhibited pH values ranging from 4.8 to 8.4.  

Carbolithic materials (coal fragments and high carbon black shales) were detected in at least 

one horizon in 29 out of 30 of the 1980 pedons, and in all the 2002 pedons.  These materials 

were readily identifiable in the field because they had a color value and chroma of ≤ 3 (Sobek et 

al, 2000). The average content of carbolithic material in the profile averaged 1-2% in the 1980 

pedons, and 5% in the 2002 pedons. Although some carbolithic materials can have high total-S 

levels, they are not always acid-producing, particularly if they are dominantly high-rank 

bituminous coal fragments.  Black fissile shales and mudrocks are generally more problematic 

with respect to pH effects in this region (Daniels and Amos, 1981).  The percentage of 

carbolithic materials in a particular horizon of the soils we sampled exhibited no direct 

relationship to soil pH. Thus, pH measurements coupled with potential acidity estimators (Sobek 

et al., 2000) are the only reliable way to determine whether a soil formed in unoxidized gray 

sandstone would have an acid or alkaline reaction, although most gray sandstone spoils can be 

expected to have a pH > 6.0.   

Overall, the soil pH range observed in both 1980 and 2002 was generally well within that 

suitable for plant growth, particularly for the grasses, legumes, and woody species commonly 

employed for reclamation in this region. In these mine soils, low water holding capacity due to 

high rock fragment contents coupled with the compacted zones discussed later are much more 

likely to be directly controlling of plant growth and long term productivity potentials than is soil 

reaction. 

  

Mine Soil Horizonation and Morphology 

A Horizon Formation.  Well-developed A horizons were found in all the pedons examined in our 

study including the 4-yr-old mine soils described in 1980 (Figs. 5, 6 and 7).  These A horizons 

averaged 13 cm in thickness, and contained weak to moderate granular and/or subangular blocky  
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Figure 6.  Four-year old mine soil profile sampled on 

Taggart Bench level in 1980. This soil possessed a 

well-developed A horizon associated with plant 

rooting and organic matter accumulation and a 

heavily compacted (densic) Cd layer at 37 cm which 

totally limited root and water penetration. These 

densic layers are formed by repeated traffic during 

mining and final grading. The intervening AC horizon 

is not labeled, and the colored scale on the tape is in 

10 cm increments. 
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peds. Several A horizons >20 cm thick were described in 4-yr-old mine soils formed in relatively 

loose materials.  Mean A horizon depth in all 30 1980 pedons was 15 cm, but varied from 5 to 52 

cm.  Root density in the A horizon varied considerably because the extent of vegetative cover in 

these minimally reclaimed mine soils ranged between <10% to 100%, with 10 pedons having 

sparse (< 25%) vegetative cover.  

Mean A horizon thickness in the 20 pedons described in 2002 was 11 cm, and was not 

significantly different (p < 0.05) from A horizon thickness in the 1980 pedons. Overall A horizon 

thickness ranged from 5-20 cm.  All mine soils described in 2002 had thick (>75%) vegetative 

cover as a result of improved reclamation practices and contained many very fine to fine roots, 

and weak to moderate granular structure in their A horizons. We described Ap horizons in the 8 

soils that obviously had biosolids chisel-plowed and disked into the surface. Biosolids 

application resulted in darker (10YR 2/2 to 3/3) A horizons with wavy boundaries caused by 

chisel plowing (Fig. 7).  Mine soils described in 2002 that had not received biosolids had a dark 

(10YR 2/2-3/3) 3-5 cm A1 horizon underlain by an A2, which was less dark (value ≥4), but was 

identifiable by granular structure and common to many roots.  While the overall thickness of A 

horizons observed in 2002 did not appear to have been influenced by biosolids application, 

overall color was darker and root density was higher in A horizons that had received biosolids.  

In an earlier study on an adjacent experimental plot area, Haering et al. (1993) found that A 

horizons in mine soils became thicker and darker over time. This finding, however, was from a 

controlled experiment done on mine soils that had been carefully constructed with selected 

overburden materials and vegetation. A horizon depth did not consistently correlate with age in 

either the 1980 or 2002 pedons in this study, since we examined mine soils formed in a variety of 

materials, including some with organic surface amendments. Although soils formed in the same 

overburden materials may develop deeper A horizons over time, depth of A horizons also 

appears to depend on overburden type, local landscape position, success of revegetation, 

drainage, and perhaps other factors.  

 

Subsurface Horizons.  Over half of the 30 pedons sampled in 1980 exhibited A-C horizonation, 

and seven had A-AC-C horizonation (Figs. 6 and 7). The mine soils with AC horizons ranged 

from 4-yr-old to 12-yr-old, so there appeared to be little consistent relationship between mine 

soil age and presence of an AC horizon. However, 17 of the 20 pedons described in 2002 
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possessed AC horizons, characterized by weak subangular blocky structure and common roots. It 

is likely that more AC horizons were present in the 2002 pedons because of increased abundance 

and depth of plant rooting as a result of better spoil placement and reclamation procedures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mine soil sampled in 2002 exhibiting 

prominently darkened Ap horizon from biosolids 

application in 1990, twelve years earlier. Overall 

horizon sequence is Ap-AC-C. 

 

In the 1980 pedons, distinct Bw horizons with moderate subangular blocky structure were 

present in two 20-yr-old soils (Fig. 8).   Bw horizons were also described in three 12-yr-old and 

one 4-yr-old pedon  (Profile 1980-2 in Table 1). These Bw horizons contained stronger structure 

grades than associated A and C horizons, and were only found in relatively fine-textured (loam 

to silt loam) mine soils, apparently because finer-textured materials have greater shrink-swell 

and aggregation potential than coarser textured materials.  Of the six Bw horizons described in 
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1980, only four met the 15 cm thickness requirement.  In these four mine soils, none of the Bw 

horizons met the clay accumulation requirement, and only two met the color requirement for 

cambic horizons. Since layering of different spoil types is common in these mine soils, it is 

difficult to determine if the apparent redder hue and/or stronger chroma in these Bw horizons 

was a result of Fe translocation within the profile.  No cambic horizons were described in the 

2002 pedons, which were generally coarser in texture, although areas of moderate subangular 

blocky structure were observed in the AC horizon of one profile. As stated earlier, cambic, or 

cambic-like horizons have also been reported in other studies of Appalachian mine soils 

(Ciolkosz et al., 1985, Haering et al. 1993, Thomas et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Moderate medium and coarse subangular and angular blocky 

aggregates broken out of the Bw horizon of a 12 year-old mine soil 

formed from a predominantly siltstone spoil.  

 

The C horizons in all pedons described in 1980 and 2002 were structureless and massive. 

Densic materials (Soil Survey Staff, 1999) were found within 70 cm of the surface in the C 

horizons of 15 out of the 30 pedons described in 1980 (see profile 1980-1 in Table 1 for 
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example). These heavily compacted zones (Fig. 6) were identified by being very firm in place, 

and by restricted rooting. The rock corrected bulk density of selected representative 1980 densic 

layers ranged from 1.75 to 1.92 Mg m
-3

.  In 10 of the 1980 pedons, densic materials were located 

within 30 cm of the surface.  Within the highwall/bench/outslope landform studied in 1980 (Figs. 

1 and 2), compacted areas were generally more common in the middle of benches, where traffic 

was concentrated, but were observed to occur almost anywhere across the bench area.  Plant 

roots were completely limited by most of these compacted layers due to the lack of structural 

planes of weakness; in others, plant rooting was concentrated along rock fragment faces. These 

zones apparently resulted from traffic by large rubber-tired loaders and haulers, and were more 

likely to be found in mine soils that formed after 1970, when usage of this equipment became 

more common.  Research on mine soils reclaimed for farmland in Illinois has shown that 

compaction resulting from equipment used in soil construction is the major factor limiting row 

crop production (Dunker et al, 1992).  

Over half (11) of the 20 pedons described in 2002 contained a densic contact or layer 

between 20 to 60 cm below the surface. Eight of these pedons, including profiles 2002-1 and 

2002-2 (Table 1) were described as having Cd horizons. Densic layers were described when the 

horizon was of very firm consistence and obviously compacted and massive in all visible faces 

of the pit. Compacted horizons in the 2002 pedons were often underlain by friable to very friable 

material. Rooting in all the pedons in which densic materials were described was confined to 

rock fragment faces. In some of the 2002 soils, mats of fine to very fine roots had formed along 

rock fragment faces, and extended to below the densic zone, but were very widely spaced.  

In a few soils, deeper C horizon soil material was so loose in place that it fell out of the 

profile into the pit. Bridging voids (Sencindiver, 1977) were also common in the lower C 

horizons of many pedons described in both 1980 and 2002.  In the 1980 soils, these voids seldom 

exceeded 15 cm in diameter, apparently because mechanical reworking and mine soil settling 

appeared to have filled any large voids that might have been present in the fresh soil. In the 2002 

soils, however, we observed profiles with large (up to 35 cm diam.) bridging voids between 

boulders at depths of 1 m or more.  

Contrasting spoil types were commonly encountered with depth in both the 1980 and 2002 

soils. If an abrupt change in spoil color, texture, or rock content (or frequently all three) was 

observed, discontinuities (2C or 3C horizons) were described (see Fig. 9). This spoil layering did 
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not appear to have any consistent relationship with landscape position or age; in fact, pedons 

with different spoil types could often be found within 50-100 m of each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Bisequel mine soil described in 1980. Highly weathered and oxidized 

sandstone spoil mixed with weathered soil horizon material had been graded over 

highly compacted gray siltstone derived spoils. Color bands on tape are 10 cm.  

Redoximorphic Features. Although mine soils are often assumed to be excessively to well 

drained because of their high rock fragment content and elevation above local water tables, 

compacted layers can cause epiaquic conditions in locations that might ordinarily be assumed to 

be well drained.  We have observed that  wet  mine soils  often develop  in  flat  areas  that  were 

highly compacted during mining and reclamation (see Fig. 4). These poorly drained areas tend to 

be concentrated at the bench/highwall contact and over shallow bedrock in pre-SMCRA mine 

soils, and in local depressions underlain by a compacted layers (Atkinson et al., 1998.) in more 

recent mined landscapes.  In the 1980 study, four of the study pits filled with water within 

minutes to hours after excavation, and the saturated zones were clearly observed to occur above 

densic layers, with water flowing down over the pit walls from above. Strongly contrasting 

(relative to surrounding matrix) low chroma colors were described in three of the 1980 profiles.  
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Low chroma colors are commonly used as indicators of saturation and anaerobic conditions. 

However, their interpretation is complicated since mine soils often contain lithochromic colors 

with chroma ≤ 2, or when formed in gray unoxidized materials, resultant horizons commonly 

have a matrix with chroma ≤ 2.  

In 2002, we deliberately located several soil pits in large (0.1 to 0.3 ha) areas in the middle of 

reclaimed benches that were dominated by obligate wetland vegetation. Redoximorphic features 

such as Fe-concentrations along root zones, or Fe-depletions in the center of peds were carefully 

noted.  Two poorly drained and two very poorly drained mine soil profiles were described. These 

soils contained common distinct redoximorphic features at or near the surface as a result of water 

table perching. Redoximorphic features such as Fe-concentrations along root zones and Fe 

depletions in the center of peds were clearly expressed, and were sufficient to meet hydric soil 

indicator status (USDA-NRCS, 1998) in surface horizons (see Profile 2002-1 in Table 1). 

Obviously, the results reported here have direct bearing on the classification and mapping of 

these soils, and those topics will be covered in future articles. Greater detail on the effects of 

various mined landforms and the presence of cambic horizons, densic layers, and hydric soil 

indicators on the classification, mapping, and interpretation of these mines soils can be found in 

Haering et al. (2003) and in our companion paper in this proceedings volume.  

Summary and Conclusions 

The pre-SMCRA mine soils examined in 1980 were formed in overburden that contained a 

high percentage of oxidized, pre-weathered material from high in the geologic column.  

Subsequent improvements in mining technology allowed deeper cuts, and thus the mine soils 

described in the same area in 2002 were formed primarily in spoils derived from gray, 

unoxidized overburden material.  Although the parent material was quite heterogeneous, the 

1980 mine soils were generally finer-textured, and had a lower pH than the post-SMCRA mine 

soils we examined in 2002.   A significant number of the 1980 mine soils were shallow (< 50 

cm) to rock or coal, while all the 2002 soils were deep (<1m). 

Soil pH varied widely in both the 1980 and 2002 pedons. Although mine soils formed in 

oxidized material tended to be more acidic, the presence of small amounts of acid-forming 

material resulted in low soil pH in some soils formed in gray unoxidized material. Neither 

overburden color nor percentage of carboliths was a good predictor of mine soil pH.  Regardless, 

acidity per se did not appear to be a dominant growth limiting factor in these mine soils.  
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Relatively well-developed A horizons were found in all the soils we examined. Development 

of subsurface horizons such as AC and Bw horizons appeared to be related more to rooting 

density and depth and fine silt+clay content than to mine soil age. Densic contacts and layers 

were found within 70 cm of the surface (often higher) in half the pedons we described. These 

densic zones were caused by mechanical compaction during mining and post-mining equipment 

operations, and appear to be permanent features, at least in the 4 to 20-yr pedogenic time frame 

we studied. Rooting in these densic layers was confined to mats along rock fragment faces or 

was entirely limited. Densic layers were often underlain by looser material with common 

bridging voids. Soil compaction during mining and reclamation also appeared to cause water 

table perching, resulting in poorly and very poorly drained mine soils in depressional landscapes 

that collect surface runoff.  Improvement in mining and reclamation technology between the pre-

SMCRA mine soils described in 1980 and the post-SMCRA mine soils described in 2002 led to 

deeper more uniform soil materials, but did not significantly reduce the occurrence of heavily 

compacted zones.  

The overall mine soil landscape in the central and southern Appalachians contains a mosaic 

of older more complex mine soils along sinuous highwall/bench/outslope landforms that abruptly 

interface with much broader expanses of modern post-SMCRA mine soils forming on a mixture 

of highwall backfills, thick spoil fills over older benches and intervening hollow fills.  

Pedogenesis occurs rapidly in these parent materials; distinct A and AC horizons form in several 

years and Bw horizons form in 10 to 20 years in finer textured spoils. While it is commonly 

assumed that these landscapes contain a thick mantle of well- and excessively drained coarse 

textured spoils, their internal drainage patterns are actually quite complex, as evidenced by the 

common occurrence of hydric soils and locally impeded internal drainage due to heavily 

compacted densic materials. Quite frequently, these heavily compacted zones occur near or at the 

soil surface, and appear to be the dominant plant growth limiting mine soil property in this 

region.  
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