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Abstract. Bacteria have been implicated and analyzed at every step in the production of acidic coal 
mine drainage (AMO). This review paper provides detailed information about microbial studies in 
mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and 
lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 
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Introduction 

The microbial role in the production of acidic 
coal mine drainage (AMO) is a multicomponent system. 
From breakdown of pyrite at the mineface, to the 
production of acids, flocculates, precipitates, and waste 
products in mine pools and surface mine lakes, to the 
ground water seeps moving through unknown pathways, 
to the discharge into nearl>y tributaries ("receiving 
streams"), to the discharge into downstream rivers and 
lakes, and finally to the discharge into treatment beds or 
facilities, bacteria have a role in producing deleterious 
products that enter the water. This complex waste stream 
is affected at every step by additional chemical, 
hydrological, and biological processes. To make this 
issue even more complex, once coal is mined, its 
overburden and other mine wastes, and some combustion 
products all form new environments and products with 
which bacteria can interact and produce acidic 
substances. Daily and seasonal climatic variations must 
also be factored in because they play an additional and 
quantifiable role in microbial reactions. 

Part of the complexity of AMD is that it 
comprises a wide variety of products, each of which 
involves its own microbial community. Acidity 
generation has at least two components--hydronium ion 
and sulfuric acid production (Rose and Cravotta, in 
press). The major metals involved in the environmental 
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impact of coal AMD are Fe, Mn, and Al. The 
interactions between acidity generation, alkalinity 
production, and metal release and uptake are often so 
intertwined and almost instantaneous that it may be 
impossible to separate them into individual reactions. For 
example, iron-oxidizing bacteria in the water generate 
energy from oxidizing iron and in so doing, they also 
release hydrogen ions. 

Microbial studies in general typically begin with 
observation of a particular phenomenon, such as 
production of acids; the next step is often counting 
numbers of cells per mi11iliter of water or calculating 
rates of reactions. Characterization in terms of pH 
tolerance, physiology, and genetics often follows. The 
autotrophic bacteria, those that derive energy from 
inorganic substances, and the heterotrophic bacteria, 
those that require organic substances for energy, are 
often studied independently. Outright elimination ofboth 
types of bacteria using poisons comprised the initial 
studies of AMD; a recent trend has been toward using 
novel AMO bioremediation methods. Through time, 
ecologists eventually initiated studies to answer basic 
ecological questions; this line of inquiry led to ideas for 
shifting microbial populations to more benign forms. 
Beneficial use of particular microbial processes is an 
emerging field in AMD amelioration. 

The earliest studies about bacteria in general 
were very useful to the next group of researchers that 
focused their attentions on AMD microbiology. 
Winogradsky (1887) suggested that bacteria could derive 
energy from oxidation of inorganic compounds, and 
Nathanson (1902) proved that microbial oxidation of 
sulfur compounds led to the fixation of carbon dioxide. 
Beijerink (1904) was first to isolate a pure culture of 
sulfur-oxidizing bacteria, and Omelyanskiy (1907) found 
that thiobacilli were involved with the oxidation of 
reduced sulfur compounds. 
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Bacteria were initially implicated in AMO 
production by Powell and Parr (1919) who speculated 
that oxidation of the pyrite in coal may be catalyzed by 
bacteria. Other landmark studies in microbial acid 
production include the isolation of the acidophilic 
sulfide-oxidizing Thiobacillus thiooxidans by Waksman 
and Joffe (1921, 1922) and the discovery of the 
acidophilic iron-oxidizing I. ferrooxidans by Colmer and 
Hinkle (194 7). Colmer and Hinkle also proved that acid 
production ceased with sterilization or the addition of 
antimicrobial agents such as mercuric chloride, phenol, 
toluene, and formaldehyde to coal mine water. Microbial 
numbers were first analyzed by Temple and Delchamps 
(1953) as the Pittsburgh coal bed was exposed in mining; 
they found the initial water from the bed to be neutral 
and neither of the two important Thiobacillus species to 
be present. After a few days, both species were present in 
high numbers and the water was acidic. Ashmeed (1955) 
later calculated that 4 tons of H2S04 were produced by 
microbial action for each ton formed by chemical 
processes. The complexity of microbial physiological 
adaptations to low pH environments is one reason that so 
much acid is produced (Goodwin and Zeikus 1987). 

Other early papers were very important in 
leading future research in the directions of downstream 
effects, treatment of acidified water, and pre-processing 
of coal. Lackey (1938) investigated 62 acidified streams 
lacking fish in West Virginia and discovered that algae 
and protozoans were abundant along with bacteria. 
Leathenetal. (1956) suggested that I. ferrooxidans plays 
a role in purifying water because they accelerated the 
oxidation and precipitation of iron close to the source of 
production. Experiments on desulfurization of coal by 
Zerubina et al. (1959) discovered that microbial 
processing was too slow to use for coal purification at an 
industrial scale. 

The effects of AMO-producing microbial 
processes ripple from the mine and then downstream 
through the food chain and preservation in the 
sedimentary record. This paper therefore looks at AMO 
production as part of a multicomponent system and 
explores past and current research at each step along the 
flow stream. Although coal mine microbiology will be 
the major emphasis, important findings from metal mine 
studies are included where processes are universal. 

Mine Microbiology 

Following the quantification of acidophilic 
bacteria by Temple and Delchamps (1953), Ashmeed 
(1955) analyzed bacteria in two underground coal mines 
in Scotland that had high sulfur in the range of 6 to 7 

percent. One mine was worked for around 50 years; the 
minepoolhadapHof2.8 and Fe 550 mg/L. The second 
mine operated 7 years, and had low Fe (0.8 m/L), and a 
mine pool pH of 7 .2. 1n the last two years of data 
collection, this second mine showed a rise in dissolved Fe 
and a decrease in the number of bases. Ashmeed showed 
that I. thiooxidans and I. ferrooxidans were always 
present in the mine pools. 

Other mine research compared differences in 
microbial populations in mines to receiving streams 
(Dugan and Randles 1968; Dugan 1970); acid, sulfate, 
and ferric iron were formed in the mines and gob piles. 
Acid bacteria were also analyzed in a sealed 
instrumented drift mine in Vinton County, Ohio; Smith 
and Shumate (1968) added a nitrogen atmosphere and 
found acid production from bacteria decreased 
approximately 50% after oxygen dropped below 10 
percent. At the Decker coal mine in Montana, microbial 
activity was limited to pyrite microzones in the coal 
(Olson et al. 1979); carlJonate minerals in the coal 
quickly neutralized any in situ acid production. 
Furthermore, sulfate reducing bacteria were present in 
the mine waters (Olson et al. 1979). Microbial succession 
includes I. ferrooxidans, Leptospirillum ferrooxidans 
and a Metallogenium-type as pH drops during pyrite 
oxidation (Walsh and Mitchell 1972). 

The microbiology of strip-mine lakes in old 
surface mines has been another focus. Water chemistry 
of surface mine lakes can eventually change to more 
alkaline conditions where growth of anaerobic bacteria 
can be encouraged (King et al. 1974). pH rises with the 
onset of stratification and concomitant increase in sulfate 
reduction (Gyure et al. 1987, 1990); heterotrophic 
bacteria were most abundant at the sediment/water 
interface. Sulfate reduction was found to be widespread 
in surface mine lakes (Wicks et al. 1991); lakes in Ohio, 
Kentucky, Kansas, Oklahoma, and Texas shared 
chemical characteristics. Not surprisingly, ordinary 
trophic level interactions occur between bacteria and 
protozoans in mine lakes (Johnson 1995b). 

Laboratory Microbiology 

A great deal of research on the microbial role in 
AMO production has been performed in the laboratory. 
Following the landmark research on iron oxidation by I-
ferrooxidans (Temple and Colmer 1951; Leathen et al. 
1953) determined that I- ferrooxidans was essential to 
production of AMD. They inoculated pyrite and 
marcasite with cultures of iron-oxidizing bacteria and 
measured the increase in acidity, sulfuric acid, and 
soluble sulfates; pH dropped from 3.6 to 1.2. Based on 
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that information, Silverman and Lundgren (1959) were 
able to design what is now considered to be the classical 
growth medium for acidopbilic iron-oxidizing bacteria. 

Isolation, identification, and genetics. Among the many 
bacteria isolated from coal, a mycoplasma, 
Thermoplasma acidophilmn, was discovered growing in 
a coal refuse pile (Darland et al. 1970). Fluorescent 
antibody techniques show that the microbial population 
in AMD is a consortimn of a small number of thiobacilli 
and a much larger number of other bacteria that remain 
to be isolated and characterized in the future (Apel et al. 
1976). All together, 37 acidopbilic heterotrophs were 
isolated in AMD waters (Wichlacz and Unz 1981 ); these 
were unable to grow at pH values greater than 6 
(Wichlacz et al. 1986. The presence of many genetic 
differences in the 37 sulfur- and iron-oxidizing bacteria 
including Thiobacillus, Acidophilium, and 
"Leptospirillmn" illnstrates that the ability to oxidize 
sulfur and iron are widespread (Lane et al. 1992). Seven 
chemical variations have been found in the 
lipopolysaccharide fraction of I. ferrooxidans (Southam 
and Beveridge 1993); this means there are at least 7 
different chemospecies of this taxon. 

Experiments with growth on pyrite. Experimental growth 
of bacteria on pyrite was first explored by Lorenz and 
Tarpley (1963). I. ferrooxidans was found to attach onto 
specific pyrite sites (Bennet and Tributsch 1978). 
Chemosynthetic autotrophs were found to use mineral 
oxidation in general for their source of chemical energy 
(Ehrlich 1990), and they use a variety of methods to 
dissolve pyrite for this energy (Ehrlich 1990). Leaching 
patterns by bacteria can actually be identified 
(Rodriguez-Leiva and Tributsch (1988) andintergranular 
porosityformedbybioleachingcanbequantified(Mustin 
et al. 1992). Selective attachment of I. ferrooxidans onto 
fresh pyrite is 90% complete within 5 minutes 
(Bagdigian and Myerson 1986), whereas Sulfolobus 
acidocaldarius performed the same activity within 2 
minutes (Chen and Skidmore 1987, 1988). Non-
hydrophobic attachment may be an important attachment 
mechanism (Takaeuchi and Suzuki 1997). The interface 
between bacteria and pyrite has been envisioned as a 
nanoenvironment (Nordstrom and Southam 1997). 

Physiology and growth characteristics. Elucidation of 
physiology and growth of Thiobacillus thiooxidans, a 
focus of Suzuki (1958, 1974). is important because the 
species is ubiquitous (Brown et al. 1990). It also changes 
its leaching activities depending on the growth 
conditions (Suzuki et al. 1990). The ferrous- oxidizing 
enzyme has been purified from I. ferrooxidans 
(Fukumori et al. 1988). and its concentrations of 

metabolites has been analyzed (Liu et al. 1988). Large 
populations of I. ferrooxidans have been found even in 
neutral pH waters (Southam and Beveridge 1992). A 
single strain of I. ferrooxidans can acidify mine tailings 
because of the ability to grow into large populations 
(Southam and Beveridge 1993). The lower pH limit of 
thiobacilli growth has been determined to be pH 2 
(Sokolova and Karavaika 1962). The transport of 
elementary sulfur is one mechanism by which thiobacilli 
oxidize reduced sulfur species (Karavaiko and 
Pivovarova 1977). Once Unz (1965) showed that 
Ferrobacillusferrooxidans could behave nutritionally like 
I. ferrooxidans after an induction period for sulfur 
utilization, Ingledew (1982) was able to lmnp 
Ferrobacillus with Thiobacillus. Useful review articles 
include physiology and growth of I. ferrooxidans by 
Ingledew (1982). dissimilatory sulfate reduction by Tuttle 
et al. (1969a). and the entire acidopbilic microbial cycle 
interacting with iron by Pronk and Johnson (1992). 

Utilization of different sulfur species. The breakdown of 
pyrite results in a variety of sulfur-bearing compounds, 
each of which can be utilized by different bacteria or at 
different places along the AMD pathway. The sulfate 
reducing bacteria can use a variety of sulfur species as 
electron acceptors (Postgate 1979). Thiobacilli can be 
cultivated on thiosulfate (Karavaiko 1962; Vishniac and 
Santer 1957). Sulfate is assimilated into cellular material 
of one strain of I. ferrooxidans but not another 
(Tuovinen 1977). Leptospirillmn ferrooxidans produces 
three different sulfur-bearing compounds and sulfur-
bearing acids are needed for oxidative pyrite degradation 
(Shippers et al. 1996). 

Ecological considerations. The influence of AMD on 
populations of bacteria were traced in a non-acidified 
stream; control of acidity and sulfate were both important 
(McCoy and Dugan 1968). Successional changes in an 
artificial coal spoil were monitored by Harrison (1978) 
who noted that shifts were driven by acidification and 
that other organisms began to bloom as the pH rose. pH-
controlled succession was not necessary because I. 
ferrooxidans can theoretically acidify the environment 
without assistance (Kleinmann and Crerar 1979). Baker 
andMills(l982)demonstratedthatT.ferrooxidanscould 
survive long exposures to circmnneutral water, and that 
transport in non-acidic water could provide a suitable 
inoculmn for acidogenic oxidation of freshly exposed 
sulfide minerals. A combination of a fluorescence 
technique with enmneration showed that succession on 
coal involved I. ferrooxidans, which was no longer 
detectable after 16 days, followed by a large nmnber of 
other microorganisms (Muyzer et al. 1987). 
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Kinetic rate reactions. Microbial oxidation offerrous to 
ferric iron controls the rate of pyrite oxidation (Singer 
and Stumm 1970). Bacteria have mnltiple roles in the 
oxidation kinetics (Lau et al. 1970). Analyzing the 
kinetics of reactions that require microbial intervention, 
Baker and Wilshire (1970) found that the concentration 
of acidity, ferrous and total iron, and snlfate in aerobic 
beds is not affected by flow rate. Oxidation rates by 
different iron- and snlfur-oxidizing bacteria varied 
primarily by the rate of utilization of the snlfur moiety in 
tbiosulfate (Bounds and Colmer 1972). In systems 
lacking bacteria, the oxidation rate of ferrous to ferric 
iron is too slow to aflect tbe oxidation of pyrite (Jaynes et 
al. 1984a). Acid prodnction by bacteria has been found to 
limit pyrite oxidation (Prein 1993). Isotopic differences 
in sulfate values have been used to help assess microbial 
rate reactions (Taylor et al. 1984). Rate of microbial 
ferrous oxidation depends on snccessional state (Mitchell 
1972), species (Lizama and Snzuki 1989b, 1991), and 
strain (Olson 1991). 

Analysis of metals, metal binding, and types of 
microbially-mediated minerals. The relationship between 
acidophilic bacteria and metals has many research 
directions. At the most basic level, Beveridge and Murray 
(1980) provided the first demonstration that metals were 
bound to the bacterial wall. Geesey et al. (1988) showed 
the sites of metal binding on bacterial extracellnlar 
polymers. Beveridge et al. (1983) also provided the first 
simnlation to show that bacterial metal complexation 
may have a profound effect on sediment chemistry. 
Stanton and Goldhaber (1991) followed microbiological 
formation of iron monosnlfides via bacterial sulfate 
rednction to discern the effect on early sediment 
diagenesis. 

Specific minerals and metals have been 
analyzed. Ferrihydrite to be the iron oxide phase that 
precipitates iron in an acidified stream (Ferris et al. 
1989). Other metals containing Ni (Ferris et al. 1988), 
Mn (Robbins et al. 1997b}, and Al (Robbins et al. 1997a) 
have been reported. Magnetite formation has been 
stndied as a method of binding AMO-derived iron 
(Svanks and Shumate 1973). 
Leaching stndies. In leach tests of cores from Montana 
coal beds, unexpected acid layers were found bearing 
both snlfur- and iron-oxidizing bacteria (Kimble and 
Temple 1980). Mnltileaching stndies on the same coals 
learned that acidity increased with snccessive leaching 
(Means et al. 1987). Dissolntion of metals from coal 
under aerobic conditions is due to direct microbial 
oxidation, whereas under anaerobic conditions, it is due 
to direct microbial reduction (Francis et al. 1987); 
leachates of low snlfur coal contained autotrophic iron-

oxidizers and organosnlfur-utilizing heterotrophs. Coals 
stored at different temperatnres and different oxygen 
tensions were leached (Tuttle et al. 1990); 
chemoautotrophic bacteria controlled the leaching of 
dissolved organic carbon by production of acid. 
Leptospirilli are as common as thiobacilli in leach 
experiments of a pyrite ore (Sand et al. 1992). Protozoan 
predators of bacteria were found to increase with 
leaching (Johnson and Rang 1993). 

Coal Waste Piles Microbiology 

Bacteria perform many roles in the tailings 
environment (Gonld et al. 1994), some of which can be 
exploited for treatment (Kalin et al. 1991). Bacterial 
reduction of sulfates occurs below spoil banks (Schopel 
1985), whereas biological reduction of Fe and Mn and 
other metals that co-precipitated with tbe oxides occurs 
below coal-combustion byproduct piles (Francis 1985). 
Biological production of acid is intense in gob piles 
(Dugan and Randles 1968). Thiobacilli cells counted in 
mine tailings were > 108/gm (Beveridge and Southam 
1992), and numerous heterotrophs have been found in 
refuse piles (Belly and Brock 1974). Percolating water 
has been found to remove the soluble reaction products 
of bacteria (Jaynes et al. 1984b). 

The data from the western coal fields, where 
more alkalinity-production is available, point out major 
differences from the above studies. Spoil samples from a 
strip mine in Wyoming contained relatively low numbers 
of acidophilic iron- and snlfur-oxidizing bacteria where 
pH values are near neutral or alkaline even where pyrite 
is present in coal (Olson et al. 1980). 

Inhibition of microbial activity in waste piles is 
an important research topic (Watzlaf 1986, 1988). 
Leaching of acid from coal refuse can be inhibited with 
the application of sodium lauryl snlfate and benzoic acid 
(Dugan 1987a, b). 

Monitoring and exploiting microbial activity in 
the waste environment has important economic potential. 
Guthrie et al. ( 1981) performed a very important 
experiment on microbial communities and waste 
products in a coal ash settling basin; they monitored 
aunnal changes showing there were seasonal peaks in 
microbial popnlations and these affected the downstream 
environments. Guthrie et al. (1978a and b) compared 
genera growing in pH 6.5 bottom ash to those in pH 4.6 
fly ash; Pseudomonas, Flavobacterium, 
Chromobacterium, Bacillus, and Brevibacterium 
dominated at the lower pH value. Metal-rich sludges 
from AMO can be treated with bacterially-generated H2S 
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to improve settling and sludge density characteristics 
(Hustwit et al. 1996). 

Ground Water Microbiology 

Ground water has been found to be affected by 
AMD. Sulfur-oxidizing bacteria in aquifers underlying 
lignite are limited by the amount of soluble carbon in the 
water (Houghton et al. 1985). Microorganisms can 
influence the chemical evolution of ground water 
underlying coal mine ovelburden by altering oxygen 
concentration, Eh, and pH (Wallis and Ladd 1985). They 
can also impact ground water quality by shifting electron 
acceptors and energy sources (Chapelle 1993). 

Stream Microbiology 

Acid tolerant populations in receiving streams 
have been found to revert to normal microflora once acid 
production from the mines ceased (Dugan and Randles 
1968). The presence and amount of naturally occurring 
calcium carbonate may affect the acid-producing bacteria 
in receiving streams (Caruccio (1968). The diversity of 
microbial populations in AMO-receiving streams was 
found to be quite high (Johnson 1991b), whereas the 
heterotrophic bacteria which attach to surfaces were 
stressed in the stream receiving AMO from abandoned 
pyrite mines (Mills and Mallory 1987). 

Many papers have been written on the co-
occurrence of acid-producing bacteria with other 
organisms in receiving streams. Yeast, fungi, algae, 
protozoans, and plan".s have been reported by Lackey 
(1938), Temple and Koehler (1954), Cooke (1966), 
Hargreaves et al. (1975), Rao (1989), and McGinness 
and Johnson (1992). Heterotrophic bacteria are 
particularly abundant in the presence of algae (Dugan et 
al. 1970 a, b). 

Microbiology of Downstream Rivers, 
Lakes, and Reservoirs 

Bacteria and their relationship to other members 
of the aquatic food chain have been analyzed downstream 
from AMD sources. Actinomycetes, fungi, green algae, 
diatoms have been reported downstream from AMO by 
Joseph (1953). Microbial numbers, types, and other 
organisms have been compared in rivers receiving AMO 
to those free of AMD (Weaver and Nash 1968); 
indigenous iron-oxidizing bacteria were found in AMD 
water. Bacteria cement iron onto grain surfaces as iron 
oxyhydroxide minerals downstream from AMO (Bigham 
et al. 1990). 

Microbial studies in lakes downstream from 
AMO-producing coal mines have not been reported, but 
there is one large lake downstream from pyrite mines 
that has received detailed analysis; the sulfate budget in 
Lake Anna in Louisa County, Virgiuia, has been 
analyzed in detail (Wassel and Mills 1983), Herlihy and 
Mills (1985, 1986), Herlihy et al. (1987). Mills (1985) 
hypothesized that manipulation of the microbial 
community could play a major role in recovery of 
downstream waters. Sedimentation was tracked after a 
storm and sulfate reduction had removed the signal of 
acid flushing within two weeks in Lake Anna (Bell et al. 
1990). 

AMO Treatment Microbiology 

The literature on microbial treatment of AMD 
is voluminous. 1n this review article, I will discuss the 
wide variety of laboratory, pilot plant, and field 
treatments, but only highlight some of the many studies. 

Biocides. Following the landmark study of Colmer and 
Hinkle (1947), biocide research first branched out into 
use of a variety of other toxic compounds including 
chromates (Bufton 1958). A wide variety of processes 
were found to kill bacteria (Hugo 1967). Compounds that 
are non-toxic to fish and humans have been isolated 
(Kleinmann 1979; Kleinmann et al. 1981; Klr.iomaoo 
and Erickson 1983) including surfactants (essentially 
soaps) such as mixtures of sodium lauryl sulfate and 
sodium beozoate (Olem et al. 1983, Dugan and Appel 
1983) and other unnamed anionic surfactants (Rastogi 
1996) and anti-bacterial agents (Shearer et al. 1968). 
Formic, hexanoic and other acids were effective 
microbial inhibitors (Dugan 1987a, b). Controlled release 
ofbiocides (Sobek et al. 1990) has turned out to be a very 
important aspect in cessation of AMO. Furthermore, a 
useful workshop manual was reprinted and includes 
some of the most important papers oo use of biocides 
(Kleinmann and Rastogi 1996). Thiodiazoles have been 
used to block microbial oxidation of sulfur-bearing 
compounds (Gould et al. 1996). A word of caution in 
biocide research was injected by Brickett et al. (1996) 
who demonstrated that sulfide leaching experiments 
using improper inhibitors can overestimate the 
importance of bacterial involvement. 

Bioreactors. Bioreactor experiments have been used to 
learn about microbial interactions with Fe, Mn, and 
sulfate. A bioreactor experiment tested the efficiency 
rates of bacterial versus chemical oxidization of reduced 
iron (Bigham et al. 1984 ); removal efficiencies of 90% 
were found in the bioreactors having bacteria; chemical 
(abiotic) oxidation was insignificant in the three month-
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long experiment. Using a bioreactor study, Gordon and 
Chuang (1990) unexpectedly discovered that Mn 
precipitating bacteria were light sensitive. Bioreactor 
experiments have also been used to measure rates of 
sulfate reduction (Herrera et al. 1993); rates as high as 
2,765 mg/Lid were possible. Different substrates have 
been tested to increase bacterial sulfate reduction rates 
including straw (Bechard et al. 1993, 1994; Christensen 
et al. (1996), polylactic acid (Edenbom et al. 1996b ), and 
polymers (Edenbom et al. 1996a). 

Burial and sealing. Burial and sealing of coal tailings 
was found to be one of the most economical method for 
preventing growth of acidophilic iron oxidizing bacteria 
(Walsh and Mitchell 1975). 

Electrical methods. Experiments have shown that 
electrobiochemical fuel cell treatment could neutralize 
AMD following microbial oxidation (Sisler et al. 1977). 

In line treatment. Multiple in line treatment has been 
shown to stop the wide variety ofbacteria that participate 
in AMD (Walsh and Mitchell 1972). A flow stream that 
included physical, chemical, and biological processes 
provides the most inexpensive treatment (Ackman and 
Kleinmann, 1985). 

Limestone drains. Removing manganese from AMD 
water has proved to be a major problem. Recent wmk on 
microbial populations in buried limestone drains that are 
slightly oxygenated have been shown to efficiently 
remove Mn (Vail and Riley 1993, 1997). 

Microbial mats. Use of microbial mats to precipitate 
AMD metals is another relatively new technique. 
Mixtures of cyanobacteria and algae are able to remove 
Mn (Wildeman et al. 1993). Key organisms have been 
isolated (Phillips et al. 1995), rates and mechanisms of 
metal uptake have been provided (Bender et al. 1995), 
and spatial variability has been analyzed (Phillips et al. 
1996; Phillips and Bender, in press). 

Sulfate reduction. Once it was understood that sulfate 
reduction raises pH (Tuttle et al. 1969b ), and that high 
quality but low cost sources of organic carbon were 
needed by these bacteria (Ogg 1972), the field blossomed 
with field experiments to treat AMD (McIntire and 
Edenbom 1990; Dvorak et al. 1992; Vile and Wieder 
1993; Fortin et al. 1994; Hammack et al. 1996). 
Understanding microbial processes such as sulfate 
reduction has led to successful reclamation efforts in 
Canada (Visser 1985) and West Virginia (Harris and 
Birch 1990). 

Waste water. A detailed review of waste water treatment 
of coal mine waste by bacteria appeared in the Journal of 
the Water Pollution Control Federation (Anonymous 
1965). Experiments at the Hollywood, Penna., 
demonstration site have led to technological advances 
using rotating discs to oxidize mine waste water and 
thereby reduce growth by iron-oxidizing bacteria (Lovell 
(1973; Olem 1975; Olem and Unz 1980). 

Wetlands. Publication of studies on AMD treatment il'; 
microbial populations in wetlands began with analyses of 
iron and manganese precipitating bacteria in bogs 
(Burris 1984). Microbially-mediated iron oxidation was 
predicted by Henrot et al. (1989) to play a key role in 
iron retention and then measured by (Henrot and Wider 
1990). Manganese fixation in wetlands has been found to 
require an oxidizable substrate (Gordon and Burr 1988). 
Incubation experiments with iron and manganese showed 
that mineral crystallization slows down dissolution 
reactions (Tarutis and Unz 1994 ). 

Detailed overviews of the many microbial 
experiments that have been conducted in wetlands are 
available (Kleinmann 1985; Kleirnuann et al. 1992). 
Size scaling has been analyzed for constructed wetlands 
that use microbial and chemical reactions to raise pH and 
drop metals (Hedin et al. 1989). Sulfide generation in 
anaerobic wetlands has been found to remove a wide 
variety of metals (Machemer et al. 1993. The ability to 
calculate sulfate reduction rates in a constructed wetland 
(Reynolds et al. 1997) means that rates can also be 
estimated for metal retention. Numbers of bacteria are 
different in the aerobic versus the anaerobic parts of 
wetlands (Wildeman et al. 1994) where metals are 
precipitating as sulfides. 

Beneficial Use of AMD Microbes 

Recovery of metals and desulfurization 
experiments are both important current directions in 
microbial AMD research. Metals are being recovered 
from metal-mine wastewater (Brierley et al. (1989) and 
coal-mine wastewater (Hammack et al. 1993, 1994) 
using bothaerobes and anaerobes. Desulfurization of coal 
has been successful using acidophilic bacteria 
concentrated from AMD (Johnson 1991a). 

Seasonal Variability and Microbes 

A few studies have analyzed the effect of diurnal 
and seasonal changes on microbial processing of acidic 
components from coal and its wastes. In Wyoming, 
where the summer is dry, bacterial numbers in spoils 
piles were low; in the wetter spring months, numbers 
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were still relatively low (Olson et al. 1980). Seasonal 
differences were analyzed in a stream draining a surface 
mine and compared to another stream where no mining 
had occurred in the watershed (Weaver and Nash 1968); 
T. ferrooxidans was present all year round in the mine-
affected stream but only in the summer in the non-mine-
affected streams. 

Three important studies looked at changes 
downstream from metal and coal mines but did not 
perform the microbial analyses that might have 
elucidated the microbial role in the effects. Ward and 
Walton-Day (1995) analyzed seasonal variations 
resulting in decrease in metals downstream. Wieder 
(1994) studied day-night changes in iron chemistry in 
treatment wetlands and found that during the day, most 
of the iron was ferric and that during the night, most of 
the iron was fenous, similar to the findings of McKnight 
and Bencala (1988) downstream from a metal mine in 
Colorado. 

Microbiology Review Articles 

Through the years, there have been some very 
useful comprehensive overviews of the microbial role in 
AMD production. The three most important books were 
written or edited by Kuznetsov et al. (1962), Mitchell 
(1972), and Ehrlich (1990). Lorenz and Stephen (1967) 
provided a valuable service by reviewing world wide 
literature on all aspects of AMD. Dugan (1975) followed 
the microbial AMD system from acidic production, 
through reactions in spoils; he reviewed the data on 
biocides and bacterial sulfate reduction. Renton (1985) 
andEvangelou (1995) looked atAMD microbiology from 
the point of view of mineralogists. Powell (1988) 
discussed all aspects of AMD production and showed 
that AMD preceded mining in the United States. 
Wildeman and Updegraff (in press) review 
bioremediation methods and show how metal removal in 
wastes is essentially a microbially mediated process. 

Future Microbial Studies 

A group of microbiologists (see 
acknowledgements) consulted for this paper provided the 
following ideas on future directions in AMD 
microbiology. Five directions that require study emerged 
from this exercise: 

I) In the mine. Research is needed on the 
differences between bacteria in anoxic, suboxic, and 
oxygenated mine pools. Paul Petzrick (Maryland DNR, 
oral commun. 1997) is particularly interested in learning 
if different mine pools have endemic microflora. H.M. 

Edenbom and L.A. Brickett (written commun. 1997) are 
currently examining microbial diversity within the mine 
located at the DOE Federal Energy Technology Center in 
Pittsburgh, PA. 

2) At seeps. Mines have numerous seep sites 
that become active when mine pools fill. Seep 
microbiology is an unstudied environment. There should 
be distinct differences between populations around 
oxygenated or anoxic seeps. 

3) In the affected ground water and hyporheic 
zones. More studies need to be conducted to learn about 
microbial interactions of AMD with ground water and 
the hyporheic zone between the ground water and surface 
water. 

4) Synergisms between microbial acid 
production and the metal-stripping capabilities of other 
aquatic organisms. Microbial mats are obviously complex 
communities that have individuals that compete, 
cooperate, or are neutral in their relationships to one 
another. Krishnaswamy (1996) has begun a study 
looking into such synergisims. 

5) Reactions in different climates. Climate must 
play a major role in the types and numbers of bacteria 
involved in AMD production, and yet this subject is 
barely touched upon in the present worldwide literature. 

Discussion and Conclusions 

The microbial role in AMD production and 
treatment has been studied for almost I 00 years. Species, 
numbers, interactions, processes, treatment, beneficial 
use, and daily and annual variations have been analyzed 
in the mine, in the waste piles, in the receiving streams, 
in the downstream direction, in the ground water, and in 
the laboratory. Many of the references are in obscure 
publications; this is attributable to several factors. 
Microbial research in this subject is generally applied to 
specific problems, leading to reports written specifically 
for project officers. Conferences on this subject have been 
numerous through time and researchers working on the 
subject have been willing to get the information into 
inunediate print as conference papers rather than waiting 
for the long review process that results in peer reviewed 
journals. These are only some of the reasons that the 
voluminous literature is generally unknown to chemists 
and reclamationists who toil in the laboratory and in the 
field trying to eliminate acidic coal mine drainage. 
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