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Abstract: Remediation of mining waste deposited along the margins of Silver Bow Creek as a result of historic 
mining was evaluated in a multi-year research project funded cooperatively by the State of Montana, EPA, and 
ARCO Coal. The objective of the Streambank Tailings and Revegetation Study (STARS) was to evaluate the 
environmental performance of base addition, deep mixing techniques, and revegetation relative to the fate and 
transport of key metals of concern at the site. This paper summarizes the effect of lime amendments and 
revegetation on potential leaching of metals into groundwater, and runoff and erosion from streambank areas 
contaminated with tailings. Water flux in the unreclaimed and revegetated tailings was simulated using UNSAT2. 
Results of modeling water flux in the vadose zone indicated that 3 to 8 cm of groundwater recharge occurs in an 
average year in untreated tailings. Revegetation alters the site water balance so that groundwater recharge is 
unlikely. The amount of metals that migrate into surface water during high-intensity summer thunderstorms was 
predicted for existing conditions and for lime-treated and revegetated tailings. The US Department of Agriculture 
GLEAMS model was used to predict long-term runoff and erosion from the site. A three-year GLEAMS simulation 
indicated that STARS treatments would decrease runoff by 2 to 3-fold, and would change the timing of runoff. On 
the existing tailings, runoff was predicted intermittently from March through September. On reclaimed areas, runoff 
was predicted only in March and April when Silver Bow Creek provides more dilution. Substantial reductions in 
metal loading could be achieved due to reduction in runoff from mid-summer thunderstorms which are historically 
associated with fish kills. 

Introduction 

The Silver Bow Creek site located downstream from the Butte mining complex in Montana is one of the 
largest Superfund (Comprehensive Environmental Response, Liability and Compensation Act) mining waste sites 
in the United States. Large volumes of metallic sulfide tailings were fluvially transported by Silver Bow Creek and 
the upper Clark Fork River in the early !900's. As a consequence, the floodplain system is widely contaminated 
with metal-enriched, low pH, acid-forming materials which have contributed to degradation of surface water quality. 

Streambank tailings at the Silver Bow site may pose a significant environmental risk to both surface water 
and groundwater. Fish mortality has been a common occurrence in the Clark Fork River downstream of Silver Bow 
Creek during high-intensity convective thunderstorm events. Dissolution of metals in runoff from tailings areas 
probably causes short term increases in metal loads. Addition of alkaline amendments to increase soil pH and 
decrease metal solubility in conjunction with revegetation may reduce metal transport during runoff events. 

Although widespread alluvial groundwater contamination is absent along Silver Bow Creek, recharge to 
groundwater by metal-enriched tailings pore water has the potential to degrade water quality. Tailings are generally 
located 30 to 100 cm above groundwater and overlie natural floodplain soils. Potential evaporation exceeds 
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precipitation in this semi-arid area. As a result, three conditions must exist for appreciable migration of metals to 
occur. The tailings pore water must contain elevated metal levels, downward flow of water must occur through the 
tailings, and metals must not be attenuated by underlying natural soils in the vadose zone. Direct sampling of 
tailings pore water using lysimeters indicated that elevated levels of iron, aluminum, manganese, copper, cadmium, 
zinc, and arsenic are common. 

The STARS investigation was initiated to develop methods for remediating streambank tailings areas. A 
series of small plots was amended with lime and seeded with metal-tolerant plants in 1989. Various amendment 
incorporation methods were evaluated in the field investigation. Environmental performance monitoring of the 
STARS treatments was conducted from 1989 through mid-1992 (Schafer & Associates et al. 1993). The purpose 
of this investigation is to report on the effectiveness of selected STARS treatments in reducing the transport of 
metals into surface water and groundwater. 

Methods 

Field Site Description 

Fluvially-deposited tailings and mine waste along 35 km of Silver Box Creek have generally denuded the 
floodplain in a 15 to 300 m wide corridor. The tailings have pore waters with pH from 3.0 to 4.5 and elevated 
concentrations of total or soluble copper, zinc, arsenic, cadmium, iron, aluminum, manganese, and lead. Two field 
study sites were selected on tailings with differing physical characteristics. The "Rocker" field site, which is typical 
of high-gradient stream reaches, consists of coarse sands and gravels with thin inter-stratified silt layers. 
Groundwater is located at a depth of 135 cm. The "Ramsay" field site is typical of low-gradient stream reaches. 
Tailings deposits are 30 to 60 cm thick and extend laterally 200 m from the channel. Mine waste and natural 
sediments at Ramsay are silt and clay-textured and groundwater was located at 190 cm. 

Unsaturated Flow Modeling Using UNSAT2 

A number of public domain models are available for simulating variably saturated flow in porous media. 
A saturated-unsaturated flow model, UNSAT2, was used to simulate differences in the rate and direction of 
convective water flux in untreated and revegetated tailings. UNSAT2 (Davis and Neuman 1983) has been widely 
applied to predict water flux in agricultural soils, in waste management facilities, and in earthen dams. UNSAT2, 
which was used as a 1-D model for this simulation, contains a number of options for simulating the capillary 
influence of groundwater, evaporation from bare soil surfaces, and withdrawal of water for transpiration by plants. 

The numerical basis for unsaturated flow simulation in partially saturated soils is derived from the 
Buckingham-Darcy flux law [l], (Jury et al. 1991). The first hydraulic head term refers to the soil matric or suction 
potential. The second term in the hydraulic head expression is the unity downward gradient for vertical flow. In 
a soil at equilibrium with a shallow water table h is equal to -z so that the matric potential gradient is -1 and the 
total head (H) is zero, hence no flux occurs. By measuring the matric potential at a given distance above the water 
table, the direction of flow in unsaturated soil can be inferred. The soil matric potential always has a negative sign 
while the suction potential is equal in value to matric potential but is expressed as a positive number. The negative 
sign in [1] is used so that downward flux will be negative while upward flow is positive. When the matric potential 
gradient is less than -1 then upward flux occurs. Conversely, when the matric potential gradient is greater than -1, 
downward flux will occur. 
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J = -K (ilh +l) 
w u caz 

where Jw is the rate of water flux (cm), [l] 

K,, is the unsaturated hydraulic conductivity (emfs), 
and h and z are components of total head (cm) such that (h+z=H) 

The Richards equation [2] which is the fundamental numerical expression governing transient water 
movement in unsaturated soil is derived by combining [1] with the continuity equation. UNSAT2 like other 
transient flow models was developed on the basis of the Richards equation with additional source and sink terms 
for plant water extraction. 

~ = _i fK (ilh +l] 
ilt ilz L " ilz 

[2] 

UNSAT2 version 2.1, written in Fortran-77 is a two-dimensional finite element model. In addition to 
conventional fixed head, fixed flux, and impermeable boundary conditions, UNSAT2 also provides a number of 
special boundary conditions controlled by atmospheric variables. Examples include seepage faces, infiltration, and 
evaporation surfaces. The type of boundary as well as the value of the boundary data can be changed using a 
simulation restart feature. The relationship between hydraulic conductivity, suction, and water content can be 
described using the vanGenuchten equation [3] in version 2.1. 

1 s, = -----~ 
(I- I) 
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ce-e J 
where S = ' 

[3] 

' ce, -e,i 
e = volumetric water content (cm 3/cm 3), e = residual water content 

' e, = saturated water content, and N and o: are vanGenuchten parameters 

GLEAMS Model Theory and Structure 

The USDA-ARS GLEAMS model (Knisel 1980) was used to simulate runoff and erosion from STARS 
treatments compared to untreated streambank tailings. The USDA GLEAMS model was used to evaluate qualitative 
changes in runoff from untreated and revegetated streambank tailings areas. Rainfall-runoff tests were also 
conducted to identify effects of treatment on metal concentration in runoff. The GLEAMS model consists of several 
component submodels for calculation of root zone hydrology, erosion, nutrient flux, and pesticide flux. Separate 
parameter input files are developed to run each component. Pass files are created by each component run for use 
in subsequent batch routines. Only the hydrology and erosion components of the GLEAMS model were used for 
this simulation. 

The first component, hydrology, uses daily rainfall data, monthly temperature and solar radiation data, and 
various soil parameters for computation of the daily water balance. The amount and timing of runoff as well as 
other components of the water balance are computed, and pertinent information on storm size and runoff are passed 
to the erosion model component. 

The technique used for estimation of runoff from daily rainfall data is the Soil Conservation Service (SCS) 
curve number approach which has been widely adopted throughout North America. The curve number approach 
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(Mockus 1985) relates the depth of runoff for a given depth of rainfall to the antecedent soil water content and to 
the "curve number" (CN). Curve numbers vary from Oto 100, and are related to the infiltration capacity of the soil. 
Detailed guides have been developed for estimating curve numbers (Mockus, 1985). High curve numbers are typical 
of impermeable soils and disturbed areas while low curve numbers are found on well-vegetated permeable natural 
soils. 

Rainfuall runoff is numerically related to runoff by the curve number. During a rainfall event, no runoff 
is presumed to occur until the rainfall depth exceeds 20% of the remaining soil water storage capacity. Soil storage 
is the difference between saturation and the antecedent moisture content (which is influenced by historical rainfall 
and evaporation). While the SCS curve number approach relies on a generalized assessment of the antecedent 
moisture condition, the GLEAMS model maintains a daily water balance so that s can be computed. In addition, 
the water balance module tracks cumulative runoff, evaporation, transpiration, percolation, and changes in soil water 
content. 

The erosion component of the GLEAMS model utilizes the Yalin equation to compute the sediment transport 
capacity of runoff. Estimated soil loss can be either "detachment-limited" or "transport-limited". Detachment can 
occur due either to rain-drop splash or to the energy of overland flow. Overland flow from hillslopes can be routed 
in a number of ways. The simplest simulation is for overland flow to be routed directly to a channel at the edge 
of the domain. In addition, overland flow can be concentrated into a channel within the field boundary. 
Additionally, the hillslope profile can be segmented into various shapes (eg. uniform, convex, concave, or complex). 
Overland flow and sediment are routed through each segment. Deposition or flow-induced detachment can occur 
within any hillslope of channel element within the model domain. The hydrology and erosion components of the 
GLEAMS model have been validated at experimental research watersheds in Montana, Texas, Oklahoma, Ohio, 
Georgia, Nebraska, West Virginia, Mississippi, Iowa, Arizona, and New Mexico (Knisel 1980). In general, the long-
term trend in runoff and erosion rates were accurately predicted by GLEAMS although model performance on 
individual storms was less reliable. 

MODEL CALIBRATION 

UNSAT2 Domain and Boundary Conditions 

To simulate unsaturated flow at the STARS field sites, the hydraulic properties of typical samples were 
characterized using a variety of field and laboratory tests. Simulation was performed at the Rocker and Ramsay 
Flats sites in because these sites were most representative of the variety of streambank tailings conditions along 
Silver Bow Creek. 

All soil samples characterized by desorption analysis (relationship between measured water content and 
suction) were grouped into 5 "type" textures (Fig. 1). The relationship between water content and water potential 
was fit to the soil hydraulic relationship developed by vanGenuchten [3]. Desorption and unsaturated hydraulic 
conductivity (K,,) curves for each "type" soil are presented in Figs. 1 and 2. 

The domain modeled for each site was a 240 cm deep profile. Elements were thinner at the soil surface to 
avoid numerical instability associated with the steep water potential gradients that develop at the soil surface in 
response to evaporation. The type textures selected and the depth to the water table were based on field logs of 
lysimeter, piezometer, and neutron probe installations at each site. 

The domain was initially modeled with a constant head boundary at the groundwater table to simulate the 
free water surface. The nodes at the soil surface were a special type called evaporation/infiltration (EI) nodes within 
UNSAT2. During simulation, a potential evaporation or infiltration flux can be set. In an EI node, the actual 
evaporation or infiltration can be equal or less than the potential rate depending on the ability of the soil system 
to transmit water to satisfy the potential flux at the surface. 

43 
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Figure 1. Desorption curves for type soils 1 through 5 
for the STARS investigation. 

In order to simulate the fully-drained soil profile 
(eg. field capacity), the domain was initialized as a nearly-
saturated condition (a suction of -20 cm). A fixed head 
boundary of O cm of suction was set at the groundwater 
table at each site (Rocker at 135 cm, and Ramsay at 190 
cm). The profiles were allowed to freely drain with no 
imposed surface flux for 90 days at Rocker and 180 days 
at the less permeable Ramsay site to reach fully-drained 
conditions. 

For the simulation, the year was partitioned into 
three time periods beginning on June 1. The net water 
balance for each portion of the year was inferred from 
climatological observations (Fig. 3). The first 90 days 
was assumed to have a net water deficit (precipitation 

minus 70% of potential evaporation) of 25 cm which was 
applied equally throughout the 90 day "summer". The 
next 180 days consisted of a slow rate of surface 

infiltration amounting to 5 cm over the fall and winter. 
The final 90 days of the simulated year was the "spring" 
when precipitation greatly exceeded evaporation. A total 
of 10 cm of infiltration was assumed to occur over the 90 
day period. These values for potential surface flux were 
imposed equally for each day of the O to 90, 91 to 270, 
and 271 to 360 day simulation period. The head 
conditions existing at the end of the initial draindown 
period were used as input representing day O conditions. 
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Figure 3. Cumulative evaporation deficit calculated by 

subtracting 70% of potential evaporation from 
precipitation is plotted for 1989 through 1991. 
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Figure 2. Unsaturated hydraulic conductivity curves 
for type soils 1 through 5 for the STARS 
investigation. 

At each site, two individual soil surface conditions 
were simulated. A bare soil condition was used to 
simulate existing tailings. A vegetated plot representative 
of the deep plow plot was also simulated. The model 
domain was changed from a fixed head boundary below 
the water table to a zero flux boundary during the year 
simulated. This head change was necessary to construct 
a mass water balance of the water lost to evaporation. 
The climate modeled was conservative in that slightly 
wetter-than-average conditions were used. Hence these 
simulations would tend to slightly overestimate the 
tendency for streamside tailings to generate groundwater 
recharge in an average year. 
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GLEAMS Model Parameter Estimation. The GLEAMS model requires extensive parameter estimation and input 
before it can be used to simulate runoff and erosion from unknown areas. Due to the complexity of the GLEAMS 
model, only the control and the most successful amendment/revegetation treatment at each location were simulated 
using GLEAMS. 

Precipitation input for GLEAMS runs was from the Anaconda, Montana National Oceanographic and 
Atmospheric Administration (NOAA) weather station (average precipitation 32.5 cm). A comparison of rain gauge 
measurements from each of the STARS field sites indicated that the Anaconda site correlated well with other 
stations in the basin and tended to have somewhat higher cumulative precipitation. Three full years of input data 
(1989 through 1991) were used in the GLEAMS simulations. Mean monthly average temperature and solar 
radiation values were calculated for a climate station located at Ramsay for the entire period of record. GLEAMS 
results are not highly sensitive to small variations in daily temperature and solar radiation, hence monthly inputs 
were used. 

Input parameters for the hydrology and erosion simulation are listed in Table I. The most sensitive 
parameter in the GLEAMS model is the runoff curve number (CN). Due to the sensitivity of this parameter, great 
care was taken in estimating CN values. Rainfall simulation test data were used to calculate CN values. The 
control plots at Ramsay had an unusually high curve number (95) presumably because of the rainfall-induced 
compaction on the exposed tailings. The coarse texture of tailings at Rocker resulted in a control curve number 
estimated to be 55. Due to the extremely high infiltration rate, no runoff occurred at Rocker during the rainfall 
simulation tests. The revegetated plots at Ramsay had much lower measured CN values than the control (59) due 
to the effects of tillage and revegetation. The curve numbers selected for the GLEAMS simulation (78 at Ramsay 
Flats) were conservatively set higher than the measured CN values due to potential bias in site selection for the 
rainfall simulation tests. 

In general, a relatively thin root zone depth was input to simulate the control plots because observed changes 
in soil water content due to evaporation were confined to the upper 30 cm of soil. Values for hydraulic conductivity 
and soil water-holding capacity were based on measurements taken at each site. 

The leaf area index (LAI) values and the crop type are important variables in simulating the on-site water 
balance. For the control plots, a LAI value of near zero was input so that GLEAMS would default to soil 
evaporation. For the vegetated plots, numerous preliminary GLEAMS runs were performed to try to simulate the 
observed changes in soil water content from the site. Very high values of LAI had to be input for simulated plant 
evapotranspiration to approach simulated soil evaporation in magnitude. Despite the fact that actual LAI values on 
the deep-till plots are near I or less, higher LAI values were input to improve model results. The beginning and 
end of the growing season and relative seasonal LAI values were input to simulate actual conditions. 

Table I. Input parameters used for the GLEAMS model - Silver Bow Creek, Montana. 

GLEAMS MODEL DOMAIN 

HYDROLOGIC PARAMETERS EROSION PARAMETERS 

Area = 1,000 by 1,000 1rapezoida1 watershed Stopa= Overall 1.5 %, 1,440 feet at 1.5 % then steepening to 30% 
Saturated Hydraulic Conductivity - measured at each site for last 30 feet 
Soil Pro1ile Percent Full = Initial water content 05% or field capacity Watershed shape = length to width ra!lo 2:1 
Evaporation Coellicient = varies by site Soil Erodib!lity K Factor = varies by site, based on LISLE 
SCS Curve Number = varies by site, based on rainfall simulation nomograph 
Root Zone Oep!h = varies by site, generally 6 inches for control Cropping Practice P Factor= set to 1.0 for all simulations 

and 36 inches for vegetated Cover Factor = varies by site, nenerally 1.0 for control and 0.2 for 
Soil Characteristics = porosity, lield capacity, wl!Ung po!n!, organic vegetated 

matter percent, clay, and sill content varies by site, based 
on obseived son morphology 

Month!Y Mean Dailt Maximum and Minimum Tem(;!era!ure - Based 
on Ramsay Flats climate station 

Month!Y Mean Dailt Solar Radiation = Based on Ramsay Flats 
climate staUon 

Vegetallon Characteristics = varies by site, growing season 
duration and LAI based on calibration results 
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Simulation Model Runs 

Groundwater Recharge Estimation Using UNSAT2 

Rocker. Changes in stored water under the bare soil and revegetated modeling scenarios are presented in Fig. 4. 
In the bare soil evaporation case, a measurable quantity of water was withdrawn from the coarse-textured tailings 
in the upper 60 cm of the soil profile (Fig. 4). The matric potential decreased to -15,000 cm (the imposed value 
for minimum permissible head at the surface node) at the soil surface in response to summer evaporation. This 
decline in matric potential created a very steep upward gradient causing water to move to the surface from a depth 
of about 30 to 60 cm in depth. The rate of water movement in the surface layer became so slow, however, that 
only 4.2 cm of actual evaporation occurred, a small fraction of the potential evaporation of 25 cm. Bare soil has 
been found to serve as an effective evaporation barrier by other investigators (Hillel 1980). During the subsequent 
fall and winter period, the imposed infiltration of 5 cm more than replenished the water withdrawn by evaporation 
so that water moved downward through the profile (Day 270). Additional percolation occurred during the rapid 
infiltration "spring" period (Day 360). Overall, the bare soil at Rocker had a net groundwater recharge of 8.4 cm 
or about 25 percent of the average annual precipitation. 

Simulation of a revegetated plot at Rocker 
suggested that plant roots would remove water to a much 
greater depth than surface evaporation. A significant 
decrease in water content occurred throughout the domain, 
but the decline in matric potential was most pronounced 
within the root zone (upper 90 cm). The revegetated plot 
had 5.2 cm less water at the end of the year than at the 
beginning and therefore was not expected to generate 
recharge. Vegetation at the Rocker site was expected to 
be sub-irrigated as evidenced by the gradual decline in the 
water table during the summer. Overall, the bare 
streambank tailings areas would be expected to have 8.4 
cm of percolation over the year while the revegetated plot 
was not expected to generate any percolation. 

Ramsay. Patterns of water use and changes in stored soil 
water simulated at the Ramsay Flats site were similar in 
many regards to Rocker despite significant differences 
between the sites. Ramsay soil had a slower hydraulic 
conductivity and greater depth to groundwater than at 
Rocker. 
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Figure 4. Cumulative water flux from bare soil and 
vegetated tailings at Rocker and Ramsay. A 
net annual increase in soil water indicates the 
potential for groundwater recharge. 

Despite the low permeability of the tailings at Ramsay, an appreciable amount of groundwater recharge is 
expected where bare tailings are exposed. In the bare soil case, a total of 6 cm was removed by evaporation during 
the summer period. As expected surface evaporation did not extract water content much below the top 30 cm of 
soil. Overall for the year the bare soil site gained 7.2 cm of water, only slightly less than at the coarser-textured 
Rocker site. 

The simulation of the vegetated plot suggested that water would be removed by plants to 105 cm in depth. 
Plants withdrew 19.7 cm of water during the summer period. The matric potential of the vegetated Ramsay plot 
dropped to -15 bars at the soil surface and from -2 to -6 bars in the remainder of the root zone. Recharge the 
following winter created an obvious wetting front as water was replenished in the upper 45 cm of tailings. After 
the spring recharge period, the vegetated case at Ramsay was 5.8 cm drier than at the beginning of the year 
indicating that groundwater recharge is not likely to occur after vegetation becomes established. 
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Runoff and Erosion Modeling 

Rocker. Simulation of the control and vegetated areas at Rocker were conducted using GLEAMS (Table 2). The 
soil material at Rocker was coarser in texture than at Ramsay Flats and so had a lower water-holding capacity, a 
much higher infiltration rate, and had less erosive soils than at Ramsay Flats. The water balance results for three 
years of simulated rainfall at Rocker indicated that 4.29 cm inches of percolation (eg. groundwater recharge) would 
occur on the control plot, while the higher evaporative use of water by established vegetation would prevent 
percolation. Runoff averaged 1.68 cm and 1.55 cm on the control and vegetated areas respectively. Predicted 
runoff was less at Rocker than at Ramsay due to the lower runoff curve number of both the control and vegetated 
treatments at Rocker. Runoff was only predicted in March and April, presumably in response to snowmelt events. 
Less difference in runoff was noted between the control and deep plow plots because reclamation had less overall 
effect on the curve number due to the already rapid infiltration on the control plot. Predicted soil loss at the Rocker 
site was 0.7 tons/acre for the control and 0.14 tons/acre for the deep plow plot. These low rates of soil loss were 
due to the coarse texture and rapid infiltration rates of soil at Rocker. 

Ramsay. Runoff and erosion were simulated for the Ramsay control and vegetated treatments Ramsay using the 
calibrated GLEAMS model (Table 2). Significant differences in the amount of runoff and erosion were predicted 
between the control and deep plow treatments. For the 3-year simulation, 3.71 cm of runoff occurred from the 
control, while only 1.70 cm was predicted from the deep plow plot. No percolation below the root zone was 
predicted for either treatment, hence evaporation and transpiration accounted for the remaining average annual 
rainfall of 32.5 cm. 

Table 2. Summary of water balance results and soil loss from the USDA CREAMS runoff model for the 
Rocker and Opportunity sites Flats (1989 to 1991). 

WATER BALANCE TERM RAMSAY RAMSAY ROCKER ROCKER 
CONTROL DEEP PLOW CONTROL DEEP-TILL 

WATER BALANCE SUMMARY 

Precipitation (cm/yr) 32.5 32.5 32.5 32.5 

Runoff ( cm/yr) 3.71 1.70 1.68 1.55 

ET (cm/yr) 30.0 35.8 26.9 32.8 

Percolation (cm/yr) 0.0 0.0 4.29 0.0 

Soil Loss (!/acre/yr) 13.7 1.2 0.7 0.14 

The timing of runoff also differed between the control and vegetated treatments. Peak monthly runoff for 
both treatments occurred in April or May, depending on the year. Measurable amounts of runoff occurred 
throughout the summer from the control plot, while no runoff occurred after the end of May from the vegetated plot. 
This difference in the timing of runoff is thought to be significant in that most fish kills on the Clark Fork have 
been observed in July and August after convective thunderstorms. Runoff during midsummer may contain higher 
concentrations of dissolved metals due to the formation of metal-enriched salt crusts in the soil surface during warm 
weather. In addition, the higher spring instream flow means that runoff from streambank areas is more diluted when 
it mixes with the channel in spring than in summer. 

Significant differences in erosion rates were also noted between the control and deep-plow treatments. For 
the control site, an average annual soil loss of 13.7 tons/acre was predicted while only 1.2 tons/acre was predicted 
for the deep plow site. The ten-fold reduction in erosion was due to the reduction in runoff as well as the protection 
provided by the vegetative cover established on the deep plow plots. 
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Discussion 

Flux of Metals to Groundwater 

Transport of metals from streambank tailings to groundwater would require three distinct conditions including 
increased solubility of metals in tailings pore water, downward flow of water, and limited attenuation of metals in 
the underlying buried soil layers. While direct measurement indicates that tailings pore water has elevated 
concentrations of soluble metals, modeling indicates that a substantial quantity of downward convective flow occurs 
from untreated tailings. The lack of widespread groundwater contamination along Silver Bow Creek therefore 
indicates that natural soils serve as an effective geochemical barrier to metal transport. Revegetation will further 
reduce the risk of groundwater contamination by reducing the net groundwater recharge. 

Assessment of Surface Water Impacts 

Runoff rates predicted by the GLEAMS simulation were compared with US Geological Survey (USGS) 
streamflow records on lower Silver Bow Creek to determine the mass loading of runoff from streambank areas 
compared with instream flows. In addition, chemical characteristics of water collected during rainfall-runoff trials 
were used to calculate mass loading of metals into Silver Bow Creek during typical high-intensity thunderstorms. 
The purpose of this transport analysis was to; 

• determine if modeling results identify surface runoff of metals as a critical transport mechanism; 
• evaluate the effectiveness of STARS treatments as a means of reducing potential impacts to surface 

water; 
• and to determine the relative importance of dissolved versus total metals delivered to Silver Bow 

Creek. 

Hydrograph Mass Loading. To compute the mass loading of metals in surface runoff from streambank areas, it 
was first necessary to estimate the contribution of runoff water from streambank areas. For this analysis, the 
contributing area was assumed to be the lower IO miles of the Silver Bow Creek floodplain. Only the lower portion 
of the floodplain was used because most convective storms are rather localized, and it was implausible to assume 
that the entire watershed would be affected by a convective storm cell. The streambank tailings contributing area 
was assumed to consist of a 100 foot wide corridor (120.8 acres) along Silver Bow Creek. Rainfall-runoff 
characteristics from the untreated tailings control plot were used to simulate the response of the streambank tailings 
area. Runoff from the streambank tailings area was assumed to have zero time of concentration due to its close 
proximity to the channel. Duration of each daily runoff event was assumed to be 6 hours. 

Actual flows from the USGS gaging station (#1232600) near Opportunity, MT were used to determine the 
amount of dilution that would occur when streambank tailings runoff reached Silver Bow Creek. The entire 3-year 
period of record used in the GLEAMS simulation run was reviewed, and three time periods were selected 
representing the single largest runoff event from each year. In 1989 (Fig. 5), a 0.80 inch rainstorm on August 23 
resulted in 0.11 inches of runoff. This event over a 6-hour duration resulted in 2.23 cfs of flow from the 
streambank area which would have made up 8.9% of the instream flow of 25 cfs reported for August 23. As 
expected, the tailings area runoff peak from the August 23 event occurred on the rising limb of the basin-wide 
hydrograph. This response would be expected due to the size of the Silver Bow Creek watershed at Opportunity 
(284 mi2). Similar analysis of stream hydrograph records and computed runoff in May, 1991, and in September, 
1991, resulted in streambank runoff computed to be 15.1 % and 9.2 % of baseflow. 

Metal Mass Loads. Runoff from simulated rainfall tests from untreated and lime-amended plots at Opportunity were 
analyzed for a suite of dissolved and total metals. Table 3 lists the levels of dissolved and total copper and zinc 
in runoff samples representing the "first flush" of runoff (0.05 inch) as well as the long-term runoff. During an 
intense thunderstorm, the calculated concentration of total copper and zinc in Silver Bow Creek may range from 
1.4 to 9.0 mg/I and I.I to 6.9 mg/I respectively. Dissolved copper and zinc may range from 0.4 to 4.5 

48 



CONSTITUENT CONTROL PLOT LIME-TREATED PLOT 

INITIAL LONG-TERM INITIAL LONG-TERM 
RUNOFF RUNOFF RUNOFF RUNOFF 

(mg/I) (mg/I) (mg/I) (mg/I) 

Copper - Total 60 14.3 1.31 0.60 

Copper- 30 4.0 0.45 0.093 
dissolved 

Zinc - Total 46.2 11.4 1.66 0.41 

Zinc - dissolved 35 9.3 0.55 0.033 

Table 3. Total and dissolved Cu and Zn in simulated 
rainfall-induced runoff from control and lime-
treated plots. 

0"23109 

Silver Bow Creek 

°"""" Date 

1-- Flow 1111 Rainfall 111111 Runoff I 
Figure 5. Comparison of rainfall, estimated runoff, and 

streamflow in August, 1989. 

mg/1 and 0.93 to 5.25 mg/1 respectively. These levels of copper and zinc exceed the acute criteria for protection 
of freshwater life by several orders of magnitude. The hardness-corrected copper and zinc standards at a hardness 
of 100 mg/1 are 0.018 and 0.117 mg/1. 

The runoff contribution of metals to Silver Bow Creek from revegetated plots was also calculated. On each 
of the dates when runoff was simulated from bare tailings, no runoff was predicted from any of the lime-amended 
and vegetated plots. As a consequence, predicted metal loading was decreased to zero by the STARS treatments. 
It should be noted that while no runoff was predicted for convective thunderstorms during the summer months, 
runoff was expected to occur during snowmelt. The maximum contribution of streambank runoff to Silver Bow 
Creek for revegetated plots occurred in March or April of the year and was equal to less than 2 percent of the 
instream flow. Coupled with the 25-fold or greater reduction in total metal concentration in runoff from revegetated 
plots, the overall contribution to Silver Bow Creek from the streambank areas would be expected to decline by 100 
to 200-fold due to basin-wide implementation of the STARS technology. 
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