Earth's natural laboratories: What can reclamation science learn from geothermal systems in Yellowstone?

Inflated Plain, Yellowstone Lake Depth = 30 mT = 70 - 90 °CpH 5.6

Thermal Biology Institute

JGIS

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

American Society Mining & Reclamation June 3-7, 2019

'Natural' Laboratories

- Relationship among geo- and bio-spheres
- Distribution of numerous system types (e.g., T, Geochem)
- Gradients in key system variables (e.g. T, pH, oxygen)
- Stability and/or repeatability in patterns

... that lead to hypotheses about their causes!

Color: Mineral or Pigment?

'Geochemists' Workbench'

<u>e- donors</u>

CH₄, H₂, H₂S, S, S₂O₃, As(III), Fe(II), NH₄, CO, C

e- acceptors

 O_2 , NO_3^- , NO_2^- , Fe(III)

As(V), SO₄²⁻, S₂O₃, S,

 CO_2

Inskeep et al., 2005, Geobiology

How much energy is available in a redox couple:

 $H_2(aq) + \frac{1}{2}O_2(aq) \rightarrow H_2O(I)$

 ΔG = -94 kJ/ e-transferred

 $H_2(aq) + S^0 \rightarrow H_2S(aq)$

 ΔG = -16 kJ/ e-transferred

Thermophilic Phototrophic Communities

Hyperthermophilic Anaerobic Crenarchaeota

The YNP Metagenome Project: Genomic analysis of thermophilic prokaryotic communities from the world's largest geothermal basin

Bioenergy Applications

- **Basic Science**
- Microbial evolution & phylogenetics
- Microbial community ecology
- Population biology
- Biogeochemical cycles
- Archaeal biomarkers, paleobiology

- Cellulosic feedstock pretreatment
 Biogenic ethanol, H₂ and CH₄
 Novel fermentation pathways

- Thermal stable enzymes
- Specialty compounds
 Nanomaterials

Fe Biomineralizing Communities

Streamer Communities

Filamentous 'Streamer' Communities in YNP: Three Major Lineages

Mammoth Hot Springs

Inskeep et al. 2010 Inskeep et al. 2013 Takacs-Vesbach/Inskeep et al. 2013 Dong et al., 2019

Yellowstone Lake

Yellowstone Lake Thermal Vents Inskeep et al., 2015 McKay et al., 2019

As and Sb cycling: As^{III} and As^V (Sb^{III} and Sb^V)

- Arsenite oxidation ~ energy gain using oxygen in some thermophiles (aroA, asoB)
- Arsenate reduction ~ dissimilatory reduction occurring in some archaea (arrA)

Joseph's Coat Hot Springs (JC3)

90 °C, pH 6.1 DS 22 uM As 135 uM Sb 1 uM

78-82 °C sediments

Pyrite / Stibnite

Thermocrinis BCH13/ Hydrogenobaculum OSP14

Archaeal-dominated sites and geochemical context

High-temperature acidic systems: low sulfide, high ferrous Fe, low oxygen

• Gas exchange, oxygen diffusion, Fe(III)-oxide biomineralization

Kozubal et al. 2012a, Frontiers in Microbiology

Echinus Geyser NGB, YNP

A series of thin-film bioreactors, organized as alternating pools and terraces.

O₂(aq) ~ 20 – 60 μM.

Echinus Geyser (Norris Geyser Basin) Kozubal et al., 2012 Beam et al., 2016 Jay et al., 2019

Simplified Natural Communities (Yellowstone National Park)

 Physicochemical processes establish changes in state variables as a function of distance and/or depth in geothermal outflow channels

Langner et al. 2001; Inskeep et al. 2004, Macur et al. 2004; Kozubal et al., 2012a

Sulfolobales Heme Cu oxidases

HCO subunit I of the *fox* complex, specific to Fe(II)oxidizing Sulfolobales

Kozubal et al. 2011, AEM

Evidence of virions and virocells within 15 days of *in situ* incubation; viral predation and turnover must be incorporated into 'microbiome' analyses

One Hundred Spring Plain Yellowstone National Park pH 3.5, T = 75 C

Summary Comments

- Yellowstone geothermal 'microbiomes' are comprised of diverse thermophiles in a plethora of different natural laboratories
- Lineage-specific functional proteins involved in energy capture track with geochemical conditions (e.g., O₂, Fe(II), S, As, H₂)
- Oxygen is an important electron acceptor for many thermophilic organisms
- **Gas-exchange**, hydrodynamics and diffusion contribute as niche determinants
- Numerous 'model' systems inform key controls on biogeochemical cycling

Acknowledgements

Jake Beam, Zack Jay, Ryan Jennings: Recent Ph.D. Graduates, MSU

- Mensur Dlakic, MSU
- Mark Kozubal, SBP LLC

- NSF IGERT Program Geobiological Systems
- S. Tringe, T. Woyke, T. Glavina del Rio, DOE-JGI
- C. Hendrix and S. Gunther (YNP Center for Resources)
- Thermal Biology Institute (MSU)

Air-Water Gas Exchange

- Henry's Law: $O_2(g) = O_2(aq)$
- Kinetics: f (velocity, turbulence, air-water surface area)

Biological Oxygen Demand (BOD)

Type A/B HCOs

- O_2 + aa3 + ATPase = growth
- e.g. Dox/Fox/Aox/Sox

Type C HCOs

O₂ + cbb3 + ATPase = growth

Chemical Oxygen Demand (COD)

e.g., Reactions with Reduced Sulfur $O_2 + H_2S = S_2O_3 = S^0 + SO_4$

Depth (µm)

• O_2 penetration depth ~700 ± 200 µm • *Net O*₂ *Flux* = 1.5 *10⁻⁴ µmol cm⁻² sec⁻¹

Bernstein et al. 2013, *Environ. Microbiol.* Beam et al. 2016, *Front. Microbiol.*

Genome-enabled Microbial Interaction Modeling

Reference Microbial Community Types

Concept, Platform and Organizing Structure

Consistent themes for graduate training,
 Biotic, geochemical, hydrodynamic interactions,
 Profiling 'reference communities' (> 100 site metagenomes available from our group)
 Foundation for biotic (resource) inventory.

For example (see videos):

Mammoth Hot Springs Filamentous Streamers What's in a Wiggle: Echinus Geyser Fe-oxide Microbial Mats Microbial 'Beaver' Dams

Field Laboratory for Graduate Training

Phylogenetic Tree: Bacteria

Simplified Natural Communities (Yellowstone National Park): One Hundred Springs Plain, Norris Geyser Basin (NGB)

Chemotrophic communities studied along main flow path

<u>Geochemistry</u>

- pH = 3.4-3.5
- Fe(II) = 45 μM
- $O_2(aq) = <1 \text{ to } 100 \ \mu\text{M} (A \text{ to } D)$
- H₂S(aq) = 10 to < 0.3 μM (A to D)

OSP_A; T = 80-84 °C

5 cm

Primary Flow Path

Filamentous 'Streamer' Community OSP_G; (YNP_14); T = 74-76 °C

OSP_B; (YNP_8); T = 72-75 °C

OSP_C; T = 65-70 °C

OSP_D; T = 58-62 °C