Improving Remedy Sustainability Through Use of On-Site Construction Materials

June 2015

Todd Bragdon, P.E. – CDM Smith
Cody Lechleitner, P.E. – CDM Smith
Mark Nelson, P.G. – USFS
East Fork Ninemile Creek Waste Consolidation Area (EFNM WCA)

What is the Problem?

• Waste rock and tailings deposited in Ninemile Creek are a source of contamination (i.e., lead and zinc) to soil and surface water

Selected Remedy

• Remove the mine waste from its present location and place “high and dry”
• Place 1M cy waste in local consolidation area (EFNM WCA) to reduce transportation costs
Identified EFNM WCA Area
Benefits of Developing On-Site Construction Material (Borrow Areas)

• Common Practice to Develop Borrow Materials from Mine Waste Repository Areas – Clean Soil/Rock Salvage
 – Efficient use of footprint; provides clean material while increasing waste consolidation volume
 – Represents Cost Savings vs. Imported Material (*Up to 50%*)
 – Reduces Transportation Impacts to Community, Carbon Footprint

• EPA Green Remediation Best Management Practices
 – Mining Sites (EPA 542-F-12-028): Use onsite rather than imported natural resources wherever possible

• ASTM Standard Guide for Greener Cleanups (E2893-13)
 – BMP (Materials) - Use onsite/local materials, when possible
EFNM WCA Location Site Renderings

Proposed Rock Quarry

Topographic Saddle
Local Construction Material Needs

- Rock Borrow Needs
 - WCA Buttress Rock
 - WCA Drainage Rock
 - Reclamation Area Riprap/Fill
 - Haul/Access Road Improvements
 - **400K CY Need Over 10 Years**

- Soil Borrow Source
 - WCA Vegetated Soil Cover
 - Reclamation Area Soil
 - **175K CY Needed Over 10 Years**
Rock Quarry Geologic Setting

- Puritan Fault Transects Site ~ Saddle/Drainage Locations
- Precambrian Pritchard Formation – metasedimentary quartzite and argillite
- Close Proximity to Mineralized Rock – nearby Tamarack Mines

MONONITE AND ASSOCIATED ROCKS

Upper part of the Pritchard formation

Revett Quartzite (Hobbs et al., 1965)
2013 Rock Quarry Planning – Quality of Material

- Lead and Zinc Primary COCs
- Existing Yards Program Borrow Sampling Program – Exposure Assumption Applicability:
 - Fine Grained vs. Coarse Grained
 - Residential vs. Worker Setting
 - Likely Exposure to Surface Water
- Conduct Quarry Drilling & Characterization Program
- Develop Quality Assurance Program Plan (QAPP)
2013 Rock Quarry Characterization & QAPP

- Collect and Analyze Rock Quarry Samples
- Evaluate Direct Contact/Ecological Risk – Total Metals Testing (EPA 6010B); Select Criteria:
 - Lead ≤ 530 mg/kg
 - Zinc ≤ 434 mg/kg
- Evaluate Leachable Metals (USGS Field Leach Testing); Select Criteria:
 - Idaho Aquatic Water Quality Criteria (AWQC)
2013 Rock Quarry Characterization & Results (Cont.)

- Acid Generation Potential – Acid Base Accounting (ABA) Testing; Select Criteria:
 - Net Neutralization Potential (NNP) < 20 t/kt CaCO3 eq. or Acid Potential (AP) < 1 t/kt
- Flexible Rock Classification Approach to Maximize Yield / Cost-Effectiveness
 - Type A Material (Unrestricted Use)
 - Type B Material (Restricted Use – Subsurface)
 - Type C Material (Unsuitable)
2013 Quarry Development

- Quarry Development
 - Specialty Blasting and Quarry Development Subcontractor
 - Quarry Blasting Design Executed to Correspond with Required Material Sizing
- Confirmation Sampling
 - 1 Sample per 500 CY of each material type
 - Demonstration of Methods Applicability (DMA) for X-Ray Fluorescence (XRF)
2013-2014 Confirmation Sampling Results and Program Modifications

- Total Metals Concentrations < Criteria
- Leachability Concentrations < Criteria
- XRF DMA Successful
 - Good Correlation of XRF & Lab Data
 - Establish Field Action Level for Lead of 340 mg/kg < 530 mg/kg
- Iterative/Adaptive ABA Approach
 - Low AP and NP Values
 - ABA Criterion revised to Acid Potential (AP) < 1 t/kt CaCO3 eq. in 2013 or NP:AP > 2
 - 2014 ABA Results: Uncertain/Potentially Acid Generating
- 2014 Supplemental ABA Data Collection
Figure 2. View of EFNM WCA quarry showing approximate location of oxide and transitional oxide-sulfide geochemical zones.
2014 ABA Analyses and Mineralogical Characterization

- Selective Sampling
 - 10 Biased Rock Samples to Support SEM-EDS
 - 8 Collected Samples with Visible Sulfide Minerals
- Mineralogical Characterization of Sulfur Using SEM-EDS
 - Pyrite (FeS2) Dominant Mineralogical Form of Sulfur
- ABA Results
 - Pyritic Sulfur detected in 9 of 10 Samples; AVG 0.04% > DL 0.01%
 - NP Detected at low concentrations AVG 0.6 t/kt > DL 0.3 t/kt
 - NP:AP Ranged from 1.76 to 0.01
 - High Variability in Duplicate Data (Relative Percent Diff)
 - Evaluation of ABA using NP:AP Ratio is Tenuous
Assessment of Likelihood for Rock to Generate ARD

- Alternate ABA Approach Considered
 - International Kinetic Database (Morin & Hutt 2001); 487 kinetic tests from 63 mine sites
 - ARD unlikely for rock containing pyritic sulfur content < 0.1%; recommended value of <0.05% (Li 2000)
- EFNM WCA Rock Data Indicate
 - Sulfur content (geometric mean) = 0.024%; 2014 produced rock not acid generating (NP, AP values both low)
 - Geometric mean appropriate given lognormal data distribution; mixing of placed rock
2015 and Future Quarry Activity Recommendations

- Maximize Development of Oxidized Zone of Quarry
- Consider Additional Drilling and Characterization Activities to Focus Production in Oxide Zone
- Re-evaluate Future Quarry Volumetric Needs with Available Oxide Zone Volume – Consider Other Quarry Locations
- Modify QAPP
 - Provide Training and Use Hand Lens to Identify Transitional Oxide-Sulfide Zone Material During Rock Production
 - Revise ABA Criterion to: Pyritic Sulfur Content (Geometric Mean) < 0.05 Percent
Questions?

Todd Bragdon, P.E., BCEE
CDM Smith Inc. – Denver, Colorado
720-264-1113
bragdontr@cdmsmith.com