Zero Slump Grout for Remote Closure of Mine Openings

B. Petri, MS, PE
N. Rouse, PhD, PE
OVERVIEW

• Case study of closure technique
 – Low slump grout
 – Remote closure procedure

• Application to
 – Mine closures
 – Subsidence prevention
PROJECT BACKGROUND

• Overland conveyor
 – Heavy steel truss supports
 – Concrete foundations

• Karst features discovered
 – Shale/limestone contact
SITE SURVEY

- Extensive network
- Mapping required
PROBLEM STATEMENT

- Extensive karst network
- Additional loading
- Weathering of shale
- Structural analysis required
ANALYSIS

- Rocscience Examine2D
 - 2D stress analysis
 - Simplified uniform
- 11 cross sections
 - 6 longitudinally
 - 4 perpendicular
 - Centerline of primary cave
ANALYSIS

- Material properties
 - Drilling campaign
 - Grassy Creek
 - 4,679 psi UCS
 - Maquoketa Shale
 - 4,210 psi UCS
 - Generalized Hoek-Brown
 - 4,000 psi
 - Poisson ratio 0.19

- Additional loading
 - Pier tower load
 - 105,000 lb
 - 218.75 psi
ANALYSIS RESULTS

Graph 1: Von Mises (psf) vs Distance (ft) for Lat 2 Section with and without Pier Load.

Graph 2: Von Mises (psf) vs Distance (ft) for Lat 3 Section with and without Pier Load.
CLOSURE PROCEDURE

• Karst network monitored
 – Formation of cracks
 – Longitudinal within shale
 – Weathering induced
 – Superficial in nature

• Closure plan
 – Low slump grout dam
 – Flowable concrete backfill
GROUT PROPERTIES

• 4.5 bag mix
• 2,500 psi compressive strength
• 2 inch max slump
• Superplasticizer
 – 2 gallons modified in field
 – Resulted in minus 2 inch slump
CLOSURE PROCEDURE

- Grout pumped a distance of 30 ft. from highwall
- Low slump pressure bulb
- Flowable fill to full height
CLOSURE PROCEDURE

• Minimal clearance between backfill and roof
SUMMARY

• Mine Closure and Subsidence Prevention
 – Low slump grout pressure bulb
 – Flowable high strength backfill
 • Minimize voids between fill and crown
 • Provide structural support
 – Ability to pump distances
 – Minimize risk to personnel