Replacing an Active AMD Treatment System with Semi-Passive Techniques

- Background Information
- Site Characterization
- Conceptual Site Model
- Water Treatment Approach

Presented by:
Tyler Chatriand, PE
Sovereign Consulting Inc.
Active Mining - 1993

- Coal Refuse Area #5
- Coal Refuse Area #4
- Coal Refuse Area #6
- Treatment Plant
Existing ARD Treatment

- Hydrated Lime Feed Plant
 - Mix alkaline media to neutralize pH and precipitate metals
 - 25+ yrs old
 - Weak structural integrity
 - Inadequate pump system
 - Remote – Power Outages
 - Single stage treatment
 - Insufficient Mn/Al removal

- Treatment Alternatives Analysis
 - Identify and Characterize the source
Site Characterization

- Review Historical Data
- Inventory ARD Sources
- Establish Monitoring and Gaging Stations
- Evaluate Water Chemistry and Contaminant Loadings
- Identify Treatment Alternatives
Data Analysis – Surface Water Flow

- Upper creek base flow is due primarily to Seeps 1 & 2 (at SG-A) and Seep 3 (at SG-B)

- Flow increases at SG-C much greater than Seep 5 input.

 Suggests groundwater influx
Groundwater Influence

- Pumping tests: low K (0.07-0.14 f/d) in upper reaches; higher K (0.6-1.8 f/d) in lower
- Strong GW-SW interaction in lower valley (MW-13-04)

<table>
<thead>
<tr>
<th>WELL</th>
<th>METHOD OF ANALYSIS</th>
<th>TRANSMISSIVITY (ft²/day)</th>
<th>LENGTH OF SATURATED SCREEN INTERVAL (ft)</th>
<th>HYDRAULIC CONDUCTIVITY (ft/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-13-05</td>
<td>Neuman</td>
<td>4.17</td>
<td>7.35</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Theis - Recovery</td>
<td>13.3</td>
<td></td>
<td>1.81</td>
</tr>
<tr>
<td>MW-13-04</td>
<td>Theis</td>
<td>461</td>
<td>7.89</td>
<td>58.4*</td>
</tr>
<tr>
<td></td>
<td>Theis - Recovery</td>
<td>367</td>
<td></td>
<td>46.5*</td>
</tr>
<tr>
<td>MW-13-03</td>
<td>Theis - Recovery</td>
<td>0.671</td>
<td>4.9</td>
<td>0.14</td>
</tr>
<tr>
<td>MW-13-02</td>
<td>Theis - Recovery</td>
<td>0.446</td>
<td>6.65</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* Hydraulic conductivity is not considered highly accurate due to insufficient pumping rate and length of test.
Groundwater Influence

- GW Flow rate 0.02 f/d (upper) and 0.4 f/d (lower)

- GW quality is generally good
 - Neutral pH
 - Iron < 10 ppm
- Flow increase and WQ improvement downstream due to GW influx
Data Analyses – Acidity Loadings

- Conceptual Site Model –
 - Acidity Loadings (pH, Fe, Al, Mn, flow rate)

- Compare acidity loadings from each source to the total acidity load observed at the treatment plant (as a percentage of the total loading at the site)
 - Identify data gaps
 - Prioritize treatment areas
Acidity Loadings Comparison

Seeps 1 + 2
Seep 3
Seep 4
Seep 5

Outfall
Active Treatment Plant
CCC

Acidity Load Contributions

Total Avg Acidity Load = 2700 lbs/day
Water Treatment Alternatives

- **Active Treatment**
 - Uses chemicals, energy, labor, and infrastructure (high O&M)
 - Shortest HRT and smallest possible footprint

- **Passive Treatment**
 - Low-energy dynamics employed in natural biological and geochemical processes at ambient temperatures
 - No moving parts or power requirements
 - Low O&M
 - Long HRT and large footprint

- **Semi-Passive Treatment**
 - Utilizes moving parts and chemicals WITHOUT continuous power and labor required for active systems.
 - Treat at the source
Pebble Quicklime at ARD Source

- Aquafix – water wheel driven chemical feed system
Pebble Quicklime at ARD Source
Pond 14 Lime Dosing Footprint

400 sf
Passive Mixing/Aeration – BioMost, Inc

MixWell

A-Mixer

MixWell

A-Mixer

BioMost, Inc

BioMost, Inc
Passive Aeration - Trompe

- Water-powered air compressor

- For every 4’ TDH, = 1 cfm/25 gpm

- Pond 14 Outfall = 13’

- 3 Trompes in series = 4 CFM at base flow
Seep 3 Lime Dosing
Seep 5 Passive Treatment

- Added alkalinity from upper lime dosing systems
- “Clean” groundwater influx
- Controlled releases of stormwater ponds above the site
 - Currently piped to below permitted outfall
- Constructed Wetlands
Semi-Passive Treatment

- Capital costs << Completely Passive System
- Annual O&M costs << Active System
- No power = reliable treatment
- Treating at the source allows passive polishing systems to be installed downstream
 - Manganese removal beds
 - Open Limestone Channels
- Cost-effective bandage approach
 - Buys time to explore source control efforts
Questions?

Tyler Chatriand, PE, CFM
Environmental Engineer | email: tchatriand@sovcon.com

Bill Walker, PhD
Sr. Geochemist | email: bwalker@sovcon.com

Sovereign Consulting Inc.
2101 Fourth Ave, Suite 2130
Seattle, WA 98121
www.sovcon.com
Phone: 206-812-8265