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Abstract. The objective of this study was to evaluate the influence of five 

different species of ectomycorrhizal (ECM) fungi on root colonization of native 

fungi on putatively blight resistant chestnut hybrids (Castanea dentata x C. 

mollissima) in a reclaimed mine site in central Ohio.  The five species were 

Hebeloma crustuliniforme, Laccaria bicolor, Scleroderma polyrhizum, Amanita 

rubescens, and Suillus luteus.  We used a combination of DNA sequencing of the 

ITS region and phylogenetic analyses to indentify fungi found on roots after 12 

and 18 months in the field.  Non-metric multidimensional scaling (NMDS) 

ordinations were used to determine if ECM community composition was 

influenced by the fungal inoculum used.  The results of this study demonstrated 

that the selected ECM species do not persist on chestnut after one year in the 

field.  In addition, these selected ECM species did not impede natural root 

colonization of native fungi or influence ECM community composition after two 

growing seasons.  Although these species did not persist in the field, the presence 

of ECM inoculum (with the exception of Amanita) greatly contributed to the 

survival of hybrid chestnut seedlings.  Therefore, introduced inoculum that was 

present in the very early stages of outplanting had persisting effects with regard to 

seedling establishment in the field, even if the original inoculum did not persist.  

ECM fungi native to the area colonized chestnuts resulting in increased growth 

rates.  These native assemblages may contain species better able to form 

functional mycorrhizas under these environmental extremes.  Therefore, the 

conservation of these species may be necessary to facilitate long-term survival of 

deciduous tree species historically native to these lands.   
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Introduction 

Employing ectomycorrhizal (ECM) inoculum prior to outplanting is a common practice in 

restoration projects on reclaimed mine land using hardwood trees (Castellano, 1996).  This 

technique enhances seedling’s ability to absorb water and nutrients, tolerate heavy metals and 

low pH, and protect against root pathogens in the early stages of plant establishment (Marx, 

1972; Danielson, 1985; Walker et. al., 2008; Nara, 2005).  Seedlings used in reclamation projects 

are either pre-inoculated with selected ECM fungi in field nurseries or in greenhouses as potted 

plants.  In many instances, field or greenhouse seedlings can become inoculated by fungi either 

native to that particular field or greenhouse environment.  Ensuring maximized root colonization 

by the target fungal species is a resource-consuming endeavor.  Therefore, great effort is taken to 

select the best ECM fungi suited for a certain host tree species.  In addition to host specificity, 

abiotic and biotic factors may influence a functional, persistent ectomycorrhizae in the field.  

Ecological specificity is a phenomenon that recognizes that environmental conditions may play a 

direct role in determining host specificity (Molina et al., 1992).  This explains why the EMC 

syntheses observed in the laboratory may differ from what is observed in the field (Dahlberg and 

Finlay, 1999).  In order for the host plant to receive the benefits from an ECM fungus, it must be 

able to maintain functional mycorrhiza under the environmental conditions of a specific planting 

site (Perry et al. 1989).  These manipulations might bypass some stages of natural succession and 

accelerate the establishment of late successional species in initial plantings. 

Another issue to be considered is the probability of inhibition of mycorrhization with native 

fungi present at the site by the introduced fungus.  Community composition is often affected by 

the sequence of species arrival referred to as priority effects.  These priority effects can involve 

“early colonists” negatively affecting the performance of later arrivals, probably through 

preemption of shared resources (Alford and Wilbur, 1985; Shorrocks and Bingley, 1994).  

Interspecific species interactions demonstrate that the “early arrivals” may exert strong inhibitory 

priority effects on later species.  With regard to using inoculum in tree plantings, ECM species 

already colonizing tree roots have the potential to completely exclude later ECM species.  

However, these “later arrivals” may be native fungi better suited for disturbed environments, and 

thus better facilitating the survival of the plant.  Certain environments may contain species or 

genotypes of organisms that can better survive human-caused environmental stresses (Gerhing et 

al., 1998) and better facilitate the establishment of native plant species.  Therefore, careful 
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attention should be given to the order in which species are introduced in disturbed systems so 

that priority effects and direct species interactions do not interfere with plant and fungal species 

that may play pivotal roles in ecosystem function.   

Two recent laboratory studies found contrasting results with respect to the role of priority 

effects in ECM species interactions.  Lilleskov and Bruns (2003) found pine seedlings originally 

colonized with ECM fungus Rhizopogon occidentalis to be displaced by a second ECM fungus, 

Tomentella sublilacina.  In contrast, Kennedy et al. (2009) found a priority effect; the first 

colonizing species became the competitively dominant.  It has been reported that introduced 

inoculum may persist a couple of years and eventually become displaced by native species 

(Jones et al. 1997).  Other studies have reported introduced inoculum to persist many years after 

the initial planting (Selosse et al., 1998; Sawyer et al., 2001; Di Battista et al., 2002).  Prior 

studies using American chestnut on reclaimed mine lands indicate that ECM species present on 

root systems may deter the colonization of species present on mine sites (Bauman, unpublished).  

It is not clear whether the better competitor translates into the better symbiont for an establishing 

seedling.  In addition, environmental conditions may play a very important role in maintaining 

the beneficial status of ECM root colonization (Kennedy and Bruns, 2005).  Because differing 

plant-fungal pairings can result in significant variations in host response (Bever, 2002; Nara, 

2006), evaluating the best plant-fungal combination for a specific site becomes an important 

management strategy in mine reclamation.   

The overall goal of the study was to evaluate the influence of five different species of ECM, 

introduced through a newly planted seedling, on the root colonization of native fungi on 

seedlings germinating from seeds in a reclaimed mine site in the central Ohio.  More specifically 

we wanted to investigate: 1) whether the presence of these inoculated ECM nearby has any 

competitive effect on the native fungi to colonize on new seedlings; 2) whether ECM 

colonization has any effect on the growth and survival of American chestnut hybrids; 3) the 

longevity of inoculations; and 4) the differences between the pure American and hybrids with 

respect to native fungal colonization.  The five species were Hebeloma crustuliniforme, Laccaria 

bicolor, Scleroderma polyrhizum, Amanita rubescens, and Suillus luteus.  Each of these species 

was selected because they have been reported to be early colonizers and form mycorrhizas with 

American chestnut and chestnut hybrids in the laboratory and greenhouse (Hiremath & Lehtoma, 

2007).  H. crustuliniforme is a basidomycete fungus that is a proficient root colonizer of young 
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trees.  Perrin and Garbaye (1983) reported that this fungus has the ability to protect seedlings 

against root pathogens.  L. bicolor has been used extensively as a commercial inoculum, 

particularly on Douglas fir in both nurseries and plantations (Le Tacon et al., 2005).  It has been 

reported to improve biomass production and K and Mg assimilation by increasing the mineral 

weathering and uptake of these nutrients (Christophe et al., 2010); a desirable attribute sought 

out for mine sites low in available nutrients and high in parent material.  S. polyrhizum will 

readily form mycorrhizas by either mycelium or spore propagules and is used in nursery 

inoculums (Duñabeitia et al., 1996).  More notably, species of this fungus tolerates stressful 

environments and have been reported to increase growth and survival of its host plants in highly 

disturbed mine sites (Jefferies, 1999; Bauman et al., 2010).  A. rubescens has the ability to 

accumulate heavy metals in its tissues (Demirbas, 2001) and may aid in plant establishment and 

growth by alleviating toxic amounts of metal absorbed by the plant.  Species in the genus Suillus 

exhibit a high degree of host specificity to Pinus spp. with few exceptions (Dahlberg and Finlay, 

1999).  S. luteus is a pioneer ECM fungus found on young seedlings (usually pine) in soil 

polluted with heavy metals (Muller et al., 2007).   

In the present study, we looked at the competitive effects of ECMs present on a year-old 

chestnut seedling on native fungal colonization of seedlings germinating from seeds planted in 

the vicinity.  Our studies suggest that persistence of inoculated ECM on the chestnut is variable; 

fungi with strong priority effects out-compete native species for root colonization.  In addition, 

the observations also suggest that better competitors have an increased benefit in establishing 

chestnut seedling.   

Methods and Materials 

Study Site 

In the spring of 2006, chestnuts hybrids B1-F3 (obtained from the The American Chestnut 

Foundation) were planted in the greenhouse at the USDA Forest Service in Delaware, Ohio 

(Hiremath and Lehtoma, 2007).  The B1-F3 hybrids are progeny of initial backcrossing (B1-F1), 

which were intercrossed two more generations leading to the B1-F3 chestnut hybrid genotype 

(Hebard, 2005).  Statistically, these trees contain an average of 75% American chestnut alleles.  

Inoculations were done as described earlier (Hiremath and Lehtoma, 2007).  Briefly, seeds were 

planted in a 1:1:1 vermiculite, sphagnum peat, Perlite mix present in a ~ 400ml conical container 
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and allowed to germinate.  A week after planting they were inoculated using liquid inoculum. 

The latter was prepared by placing mycelial pieces grown for 2-3 weeks on M4N agar plates at 

24
0
C in 1L M4N media in a 2L Erlenmeyer flask and incubating at room temperature in the dark 

for 2-3 weeks.  The inoculum was then macerated with a Tissuemizer homogenizer for about 30 

sec. and 30 ml was pipetted into the soil around the seed.  After approximately three months, the 

seedlings were checked for the presence of ECM on roots under a microscope and transferred to 

a ~ 1 gallon containers.  The following ECM fungi were used in the study: H.crustuliniforme, L. 

bicolor, S. polyrhizum, A. rubescens, and S.luteus (inoculation was done as described by in Marx 

and Bryan 1975).  Seedlings were grown in the greenhouse under natural light, watered as 

needed, and fertilized monthly with a 12-12-12 liquid fertilizer for one year.  All chestnut 

hybrids were tested for colonization of the inoculated fungus by sequencing the ribosomal ITS 

region (see below) prior to planting.  Only chestnut seedlings with at least 50% ECM 

colonization were selected for field planting.  Non-inoculated chestnut hybrids were used as 

control plants.   

In the spring of 2007, plants were planted as one-year old potted seedlings in the Tri-Valley 

Wildlife refuge in Madison County, Ohio.  This mine site was reclaimed in the 1980s.  However, 

this grassland is primarily vegetated with the original species used for reclamation (Festuca spp., 

and Lespedeza spp.) with small patches of ragweed (Ambrosia spp.), and goldenrod (Solidago 

spp.).  Small pockets of forest, comprised primarily of Quercus, Pinus, and Acer species, were 

left undisturbed at the time these lands were mined.  This area receives an average of 

approximately 99 cm of precipitation annually.  During the 2007 and 2008 growing season the 

summer climate was relatively dry to moderate drought with annual temperatures averaging 

22° C during the growing season (17°, 28°, and 11° C, spring, summer and fall, respectively; 

National Climatic Data Center).  Soil chemistry was similar among blocks and the averages were 

as follows: soil pH 5.4, CEC 8.13, organic matter 1.5 %, P 8.7 ppm, K 77 ppm, Mg 155 ppm, Ca 

640.3 ppm, N (NO3-N) 2, Mn 4.4 ppm, Al 5.29, sand 55%, clay 24%, and silt 21%.  Soil 

chemistry was measured in the laboratory (McCarthy, 1997) as well as at the Spectrum Analytic, 

Inc, Washington Courthouse, OH. 

We used a randomized block design with replicates where placement of seedlings was 

randomly assigned in each block.  Three 20 x 6 meter (m) blocks were installed by plowing and 

disking using a conventional tractor.  Each block contained 36 one year-old chestnut seedlings, 
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six of each treatment type (five different mycorrhizal + a non-inoculated control).  In addition, 

each block was replicated three times for a total of 108 seedlings. Seedlings were planted in 

April of 2007 at a spacing of 1.5 m within and in between the rows.  Seedlings were planted such 

that the root collar was at the level with the grade of the soil.  They were tagged and backfilled 

with original soil along with one 20-10-5 slow release fertilizer pellet.  A weed mat was installed 

with all four corners pinned using sod staples for controlling the reemergence of previously 

present groundcover.  To prevent herbivory, a 1.5 m tall fence was constructed around each 

block using chicken wire and t-posts.  Each seedling was planted with three pure American 

chestnut seeds placed in a single location about 30 cm from the center of the seedling.  To insure 

seed germination, all seeds were stored in the dark in moist peat at room temperature until the 

radical emerged from the seed. 

Data Collection 

Growth parameters such as plant height, basal diameter, and leaf area (cm2) were recorded 

after 12 and 18 months in the field.  After 18 months, 30 chestnuts were randomly selected for 

leaf tissue analysis.  Twenty-five leaves per seedling were harvested, packaged in paper bags and 

sent to Spectrum Analytic Inc., Washington Court House, OH, for tissue analysis.  Survival data 

were recorded monthly for the duration of the first growing season and once again at the end of 

the second growing season.   

ECM Sampling 

Two sampling times were selected: 12 months and 18months after planting in the field. One-

hundred and three chestnut seedlings were sampled after 12 months and 108 seedlings were 

sampled after 18 months, that latter group containing the 60 surviving hybrids and 48 pure 

American.  Root samples were harvested only during the 18 month sampling time.  Roots were 

carefully removed from the field, returned to the laboratory, washed, and observed under the 

stereoscope for mycorrhizal formation.  To quantify ECM root colonization (Percent 

colonization), 250 root tips per seedling were randomly selected and checked for ECM.  Percent 

colonization (ECM roots per 100 total root tips tested) was calculated and used to describe 

relative abundance and ECM community composition. 
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DNA Extraction and PCR 

We used ECM root tips for isolating the fungal DNA for identifying the fungus through 

DNA sequence.  For this, root tips were first grouped by similar morphology (later single root 

tips were used), and about 10 mg was homogenized in extraction buffer using a bead beater for 3 

minutes.  DNA was extracted using QIAgen’s DNeasy Plant Mini Kit and eluted from the 

column in 2 x 50 l AE buffer.  PCR primers were used to amplify the highly variable internal 

transcribed spacer (ITS) region of fungal ribosomal DNA (rDNA) in order to distinguish fungal 

species (White et al. 1990).  We performed PCR using primer pair ITSF1 and ITS4.  PCR 

reactions were set up in 500 l tubes using ~10 ng template DNA, 1x Eppendorf Taq buffer 

(50mM KCl, 10 mM Tris-HCl pH 8.0, 0.15 mM Mg(OAc)2), 20 M each dNTP, 0.2 M each 

primer ITS1 and 5 units of the enzyme Taq in 100 l reactions.  Reactions were subjected to 40 

cycles in Perkin-Elmer thermal cycler under the following temperature regime:  1.5 min at 96° C, 

1 min at 55° C, 2 min at 72° C.  Completed reactions were subjected to 10 min incubation at 

72° C and then stored at 4° C.  Products were subjected to electrophoresis on 0.7% agarose gel 

and the PCR product bands were isolated from the gel using Bio101 Geneclean Kit and 

resuspended in 20 l dH2O.  

Sequencing 

The PCR product was cleaned and prepared for sequencing using a BigDye Terminator v3.1 

Cycle Sequencing Kits by mixing 10 μL reactions of the following concentrations: 2 μL BigDye 

Terminator v3.1 Reaction Mix, 3 μL 5 X Sequencing dilution buffer, 1 μL primer and 1 μL of 

template.  Sequencing cycle to label DNA for sequencing was performed on a programmable 

Thermal Cycler for the following cycles: 96° C for 1 min followed by 25 cycles of 10 s at 96° C, 

5 s at 50° C, and 4 min at 60° C.  Sequencing was performed with The Applied Biosystem ABI 

Prism 3730 DNA Analyzer (Bioinformatics facility, Miami University, Oxford, Ohio).       

ECM Identification 

The DNA sequences were analyzed and edited using a Sequencher 4.2 software (Gene 

Codes, Ann Arbor, Michigan).  To identify fungi found on roots ITS sequences from our samples 

were compared to those in the GenBank using BLAST searches (Altschul et al., 1997).  Genera 

reported here were based on the best match to those reported for the fungi in the GenBank.  

These species formed the basis of the ECM community described in the results.  To add 
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statistical support to the BLAST identification for multiple species of Scleroderma sampled from 

chestnut, we constructed a phylogenic tree using our sampled sequences to known Scleroderma 

sequences (Binder and Bresinsky, 2002).  The sequences were first auto-aligned using the 

MUSCLE, and then manually aligned in Se-Al v2.0a11.  Maximum-parsimony analyses were 

carried out using the PAUP* 4.0b10 (Swofford, 1998) using the heuristic search mode with 1000 

additional sequence replicates, tree bisection-reconnection branch swapping, and zero-length 

branches.  Fifty percent majority rule consensus trees were calculated and branch support was 

assessed by bootstrapping with simple taxon addition with 100 replicates. 

Statistical Analyses 

A permutational multivariate analysis of variance (PERMANOVA) was used to test for 

significant differences in ECM community per season, tree type, and inoculum treatments using 

ECM species composition as the response variable (Data not shown since no differences were 

detected).  Differences in ECM colonization among inoculum types were determined by using a 

one-way analysis of variance (ANOVA) using percent ECM colonization from pure American 

chestnut seedlings (n = 48) and inoculated chestnut hybrids (n = 60).  Arcsine square root 

transformation was used to control unequal variances.  Growth parameters such as seedling 

height (cm), basal diameter, and leaf area (cm
2
) measured at the end of the second field season 

were subtracted by the original measurement and divided by the number of months of the 

growing season to calculate relative growth rate (RGR) per month.  Data were transformed by 

assigning a value of zero to the most negative growth value and using Log+1 transformation 

(McCarthy, personal comm.).  A one-way multivariate analysis of variance (MANOVA) 

followed by a univariate ANOVA and Tukey’s posthoc test were conducted on the growth 

parameters listed above.  The differences were considered as significant when p ≤ 0.05 according 

to the F test.  A one-way ANOVA was used to determine differences in macro and micronutrient 

concentrations in leaf tissue among the ECM and non-ECM chestnut seedlings.  All statistics 

were performed using the R v2.91 (R Development Core Team 2009). 

Results  

Nine distinct ECM morphologies were observed on chestnut seedlings (n = 211).  The DNA 

sequencing of samples identified a total of 12 different ECM species (Table 1).  Scleroderma 

species 1 and 2 were the most abundant (74% of the chestnut roots sampled) while Cenococcum 
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and Thelephora species ranked 3rd and 4th, respectively.  This was followed by a Tomentella 

species and two Hebeloma species.  In addition, some other species were also sparingly seen 

which included an unidentified species belonging to the Thelephoraceae and another from 

Cortinarius.  Two unknown ECM and Pisolithus species were observed very rarely and only on 

the hybrids (Table 1).  

Table 1.  Relative abundance of different ECM species on seedlings after 12 and 18months. 

Values represent the percentage of root tips that had the ECM fungus.  Molecular 

identification of ECM root tips ranked by relative abundance sampled from all 211 

chestnut seedlings (total) and further separated into hybrids and pure chestnut trap 

trees at both sampling times.  Table includes corresponding GenBank sequence 

accession number through which the ECM fungus was identified.  

 

There were no apparent differences between the pure and hybrid American chestnut 

seedlings in their ability to associate with different ECM species (Table 1).  To verify this, 

PERMANOVAs were used to test for statistical differences in the ECM community composition 

with regard to seedling type (hybrid vs. pure American), season in which the seedlings were 

sampled (spring vs. fall), and the five different ECM species used for inoculum in this study.  All 

the analyses indicated that there were no significant differences with respect to ECM community 

composition, the time of sampling, the genotype of the seedling, and the ECM species selected as 

ECM Species   

All Sampled 

after 12 and 

18 months 

Pure 

after 12 

Months  

Hybrid 

after 18 

months 

Pure 

after 18 

months  

GenBank  

Accession #  

Scleroderma spp. 1   63% 52% 70% 72% GU246983 

Scleroderma spp. 2 11% 18% 3% 8% GU246984 

Cenococcum spp. 11% 12% 8% 12% GU246986 

Thelephora spp.  6% 10% 3% 4% GU246989 

Tomentella spp. 3% 5% 3% 0 GU246993 

Hebeloma spp. 1  2% 2% 4% 1% GU246997 

Hebeloma spp. 2  1% 1% 2% 2% GU246985 

Unknown ECM 2  1% 1% 3% 0 GU246994 

Cortinarius spp. 1  1% 0 1% 2% GU246996 

Thelephoraceae  1% 0 1% 1% GU246997  

Unknown ECM 1   1% 0 2% 0 GU553376  

Pisolithus spp.   1% 0 1% 0 GU553367  
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inoculum (data not shown).  In addition, our ECM inoculum did not have any influence on 

percent root colonization on chestnut seedlings (data not shown). 

To confirm that ECM species sampled in the field were not part of the inoculum used in the 

greenhouse, we used a maximum parsimony tree to illustrate the phylogenetic relationship of our 

ECM samples as they relate to our greenhouse inoculums.  An example of this technique is 

illustrated using Scleroderma sequences in the phylogeny in Fig. 1 (ITS phylogeny of 

Scleroderma species).  Sequences sampled from both hybrids and pure American seedlings were  

  

Figure 1. ITS phylogeny of Scleroderma species. Maximum parsimony 50% majority rule tree 

with bootstrap values is shown.  Each accession number represents sequence of the 

ECM species deposited in the Genbank.  The positions of Scleroderma species 1 are 

within a clade that is closely allied with the S. areolatum species (GenBank accession 

numbers EU819438 and EU819518).  The Scleroderma spp. 2 forms a clade with the 

species S. citrinum (GenBank accession numbers EU784413 and EU784414).  This 

indicates that the ECM fungi sampled from the root tips were not part of the original 

Scleroderma inoculum.   
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compared with sequences of Scleroderma isolates deposited in the GenBank.  A maximum 

parsimony, 50% majority rule tree with bootstrap values is shown.  The positions of Scleroderma 

species 1 are within a clade that represents species related to S. areolatum  (GenBank accession 

numbers EU819438 and EU819518).  Similarly, the Scleroderma spp. 2 forms a clade with S. 

citrinum (GenBank accession numbers EU784413 and EU784414).  The resulting phylogeny 

gave support to our finding that the Scleroderma species sampled from chestnuts were not part of 

the original inoculum (S. polyrhizum) used to inoculate chestnuts in the greenhouse prior to 

planting in the field. 

PERMANOVAs were used to test for differences in ECM communities per time of sampling, 

tree source, and inoculum.  These analyses showed that there were no community differences 

existing (data not shown).  In addition, ECM inoculum did not have a significant influence on 

chestnut root colonization (data not shown).   

There were significant differences after 18 months in survival among seedlings inoculated 

with different ECM inoculum (Fig. 2; Cox proportional hazard model, Likelihood = 121, df = 5, 

P < 0.0001).  Chestnut seedlings inoculated with S. lutues and S. polyrhizum had the highest 

survival rate (87% and 81%, respectively) and was followed by L. bicolor (61%), H. 

crustuliniforme (58%), A. rubescens (28%).  The survival rate for the non-inoculated control 

plants was 16%. 

The effect of native ECM root colonization on the growth rate (RGR) was compared among 

various genera (ECM species pooled; Fig. 3).  The data showed that ECM species in the genus 

Scleroderma and Thelephoraceae family significantly improved growth rates on the hybrid 

chestnuts with regard to height (ANOVA, F =  5.65, df = 5, p = 0.0005) basal diameter (F = 4.81, 

df = 4, P = 0.002) and leaf area (F = 7.72, df = 4, p < 0.0001).  This was not the case for 

Cenococcum or the unknown ECM, whose growth rates were comparable to the chestnuts 

seedlings without any ECM (Fig. 3).   
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Figure 2.  Survival data for hybrid chestnuts among the six different inoculum treatments (Sl = 

S. luteus, Sp = S. polyrhizum, Lb = L. bicolor, Hc = H. crustuliniforme, Ar = 

A. rubescens, and C = Control).  ECM species had a significant effect on survival (Cox 

proportional hazard model, Likelihood = 121, df = 5, P < 0.0001). 

 
 

Figure 3. Growth rates of chestnut seedlings with and without the naturally colonized ECM 

fungi.  Scleroderma (Scl) and Thelephoracea (THE) species significantly increased 

growth rates of chestnut hybrids (all P < 0.05).  Buty, Cenococcum (Cen) and an 

unknown ECM fungus (Unknown ECM) had no effect on the growth and were 

similar to the non ECM seedlings (No ECM).  Bars represent mean+ SE. similar to 

Natural colonization by native).  Bars represent the mean ± SE. Bars sharing common 

letters did not differ significantly at as determined by Tukey's HSD. 
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Leaf tissues from native ECM and non-ECM seedlings were analyzed for nutrient 

concentration. Thirty seedlings were sampled representing ECM and non-ECM plants.  Of these 

30, only 22 analyses were conclusive.  Our sample size was not large enough to direct 

comparisons among ECM species.  Furthermore, since we did not detect our original inoculum 

used, all ECM colonized seedlings were pooled into a single group and compared with non-ECM 

samples (ECM and non-ECM in Table 2).  We did not observe any significant differences in the 

nutrient content and metal composition between the two groups (all P > 0.05). 

Table 2. Nutrient and metal concentration (±SE) from a subsample of seedling leaf tissue 

sampled 18 months after planting (n=11 per treatment).  No significant differences were 

detected (all, P > 0.05).  

       

Treatment N ppm P ppm K ppm Ca ppm Mg ppm Mn ppm 

No ECM 

1.42 ± 

0.24 

0.25 ± 

0.05 

0.69 ± 

0.20 

1.12 ± 

0.14 

0.48 ± 

0.10 

1793.0 ± 

1145.93 

ECM 

1.39 ± 

0.32 

0.28 ± 

0.07 

0.65 ± 

0.13 

1.22 ± 

0.19 

0.45 ± 

0.07 

1374.75 ± 

541.67 

       

Discussion 

Although ECM colonization was verified prior to outplanting, chestnut hybrids did not 

maintain this association once they were planted in the field.  Our results showed: 1) the original 

ECM inoculated before outplanting did not persist after 18 months, however, contributed 

significantly to the survival of the seedling for the first few months, 2) the introduced ECM 

species did not influence the final ECM community composition after two growing seasons, 3) 

the presence of the inoculated ECM species did not impede natural root colonization by native 

fungi, and 4) root colonization by certain native fungi resulted in positive effects on chestnut 

seedling growth.   

None of the five ECM species (H. crustuliniforme, L. bicolor, S. polyrhizum, A. rubescens, 

and S. luteus) maintained their mycorrhizal associations on chestnuts after 12 or 18 months in the 

field.  This was in contrast to previous studies that have reported introduced inoculum persisting 

on their host plant several years after planting (Garbaye and Churin, 1997).  Species of Suillus 

have been reported to persist for four years in Mediterranean pine plantations (El Karkouri et al., 

2006).  Laccaria bicolor had maintained functional mycorrhizas for over 10 years in Douglas fir 

plantations (Selosse et al., 1998; Di Battista et al., 2002).  Amanita strains have persisted for over 

30 years on Monterey pine in Australian plantations (Sawyer et al., 2001).  H. crustuliniforme 
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has been reported to persist over two years after introduction and significantly impede the root 

colonization by native fungi (Jones et al., 2002; Bauman unpublished data).   

We found that the presence of introduced ECM fungi had no influence on the ECM 

community composition on pure American or hybrid chestnuts 18 months after planting.  This 

was in contrast to our earlier observations (Bauman, unpublished data) where we had noticed the 

bare root chestnuts that were naturally inoculated in a field nursery by Hebeloma and Cortinarius 

species appeared to inhibit the colonization of indigenous Scleroderma species when 

transplanted to a reclamation site.  Such negative priority effect has been previously documented 

on pine seedlings inoculated with H. crustuliniforme (Garbaye and Churin, 1997) and 

Rhizopogon species (Kennedy et al., 2009) demonstrating a competitive advantage to introduced 

fungi over indigenous fungi in the field.  This inhibition of native colonization could be caused 

by direct antagonistic interactions by means of mycelia overgrowth (Wu et al., 1999).  However, 

this was not observed during the current study.  Root colonization on the average was not above 

50%, which indicates that competitive dominance was not the factor. 

Previous studies have speculated that the host plant can decrease mycorrhizal receptivity 

towards less productive symbionts to minimize below-ground carbon loss if they are receiving 

sufficient benefits from another species (Kennedy and Bruns, 2005).  The ability of a plant to 

decrease colonization in high nutrient settings indicates that the host plant may have substantial 

control over both root colonization and ECM species interactions (Johnson et al., 1997).  

Assuming the host plant increases carbon allocation to the most beneficial fungal symbiont, the 

best fungal competitors are the species that provide the greatest benefit to the plant (Kennedy 

and Bruns, 2005).  In our study, species of Scleroderma and Thelephora contributed significantly 

in increasing the growth of the hybrid chestnuts.  Although we did not see any differences in 

foliar nutrient concentrations in ECM plants, benefits may have been increased in water uptake, 

an attribute associated with the rhizomorph production of species such as Scleroderma.  In 

contrast, chestnuts colonized by Cenococcum and unknown ECM species 1 had similar growth 

rates to the non-ECM controls.  It is worth noting that Dulmer (2006) reported the presence of 

Cenococcum geophilum casued or was seen only on unhealthy chestnuts, suggesting that this 

species may have a negative impact on the health of the chestnut seedlings.  Species like 

Cenococcum have been shown to increase in abundance in the absence of a better competitor 

(Dickie and Reich, 2005).  If competition between different species of fungi is strongly mediated 
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by plant feedbacks, carbon allocated to a less productive symbiont like Cenococcum may 

decrease when a better competitor is present.    

Lilleskov and Bruns (2003) found that pine seedlings inoculated with Rhizopogon 

occidentalis were completely replaced by Tomentella sublilacina.  In their study, R. occidentalis 

was more effective at colonizing roots when nutrients were not limiting.  However, when 

nutrients became a limiting factor, R. occidentalis, an ECM species that tends to colonize 

effectively under resource-rich conditions, was displaced by the better competitor T. sublilacina.  

A similar situation existed in our study where the shift in resource availability from greenhouse 

conditions, where both macro and micronutrients were supplied without interspecific root 

competition, to a resource poor soil environment with competing vegetation.  Therefore, we 

observed ECM fungi that colonized hybrid chestnut in the greenhouse under controlled 

conditions, and not for fungal species with the ability to persist under low nutrients and water 

availability.  This then undermines ecological specificity which, takes in to consideration all of 

the abiotic and biotic variables that may influence a functional, persistent ectomycorrhizae in the 

field (Molina et al., 1992; Dahlberg and Finlay, 1999; Taylor, 2002; Dickie, 2007).  

Temperature, drought, soil chemistry, and competition may have been all a factor contributing to 

the demise of the introduced inoculum.   

Although the introduced inoculum may not have been able to extend beyond the original 

rhizosphere into the bulk field soil, all inocula present in the very early stages of outplanting had 

persisting effects with regard to seedling establishment in the field, presumably due to the ability 

of ECM to buffer transplant shock (Menkis et al., 2007).  The only exception was in the case of 

chestnuts inoculated with A. rubenscens, which had survival rates similar to the control plants.  

This illustrates that ECM infection may not create symbioses that are uniform in all biological 

characteristics.  Rather, these interactions may result in symbioses with varying attributes to the 

plant’s fitness under certain ecological conditions.   

It may be of greater importance that this inoculum did not interfere with root colonization 

from the native ECM community.  Scleroderma species were the most abundant and provided 

chestnuts with significant growth increases during this study.  Scleroderma species such as S. 

bovista, S. cepa, S. citrinum, and S. verrucosum have been used in commercial inocula due to 

their large host range and ability to colonize roots in disturbed environments where water 
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availability is low (Jefferies, 1999; Lu et al., 1998).  Indigenous Scleroderma species has a high 

affinity for Castanea (Meotto et al., 1999) and previous studies report a positive growth response 

in the field (Bauman, 2010).  Planting methods that promote colonization of indigenous ECM 

species may increase the success rate of colonization of these microbes on planted seedlings.  

These native ECM assemblages may contain species better able to persist in these disturbed 

environments and provide greater benefit to its plant host.  The conservation of these ECM 

species may be an important factor for the recruitment and long-term survival of tree species 

historically native to these lands.   

This study sampled roots for ECM in both spring and fall to account for seasonal differences. 

Seasonal dynamics in above-ground sporophore production has been well documented (Deacon 

and Fleming 1992), however, not much is known in case of below-ground communities, 

although a recent study reported temporal partitioning among species in ECM communities 

(Walker et al., 2008; Koide et al., 2007).  In the present case, although there were no significant 

differences in ECM community composition between spring and fall samples, the relative 

abundance of Scleroderma species 2 increased from 3% in the spring to 18% in the fall.  It has 

been proposed that these seasonal dynamics may provide a mechanism allowing the coexistence 

of species (Koide et al., 2007).  However, this mechanism may be more applicable in later 

succession when resources become limiting and temporal partitioning is required for stable 

species coexistence (Koide et al., 2007).  More sampling and analysis is needed to determine if 

these different Scleroderma species indeed display a temporal variability over time. 

Lastly, this study explored whether the observed ECM community changes were related to 

the chestnut genotype, i.e., the hybrid variety or the pure American type.  Our data clearly 

indicated that the genotype did not matter.  This is not surprising since it has been shown that 

ECM communities are generally similar on host plants with comparable taxonomic and 

successional groups (Ishida et al., 2007).  Further, proportion of ECM root tips and number of 

species sampled were similar between seedling types (pure American and B1-F3 hybrid; data not 

shown).  ECM fungi generally exhibit intermediate-to-low host specificity; intermediate may 

restrict associations to a single host family (Molina et al., 1992) or host genus level (Malajczuk 

et al. 1982).  Therefore, it was not unusual to observe a similar ECM community composition 

among pure American (C. dentata) and hybrids (C. dentata x C. mollissima).  
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