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MAPPING VEGETATION CHANGE ON A RECLAIMED SURFACE 

MINE USING QUICKBIRD
1 

Michael Shank
2 

Abstract. This paper looks at two methods for visualizing and mapping 

vegetation change on a large surface mining complex in southern West Virginia.  

Two Quickbird image sets, acquired in 2003 and 2007, were used to identify 

vegetation trends and to map significant change events manifested during the four 

year interval.  Vegetation trends were visualized using Normalized Difference 

Vegetation Index (NDVI) difference images, which proved to be a simple and 

effective means of identifying vegetation change events for further investigation.  

The study then evaluated Feature Analyst—a commercial analysis package—for 

its ability to map and quantify two of the most significant change events identified 

in the study area. 

A field investigation used handheld GPS receivers equipped with ArcPad 

software and GPS-equipped cameras to verify the cause of the two events—1) the 

defoliation of stands of black locust, and 2) a significant increase in area 

dominated by deciduous shrub vegetation, caused by rapid growth in autumn 

olive.  Feature Analyst was able to delineate the extent of black locust defoliation, 

estimated at over 152 acres on several reclaimed permits.  In the second case, the 

analysis estimated that deciduous shrub cover expanded from 32 acres to over 81 

acres on one permit, representing an increase from 6.5% to 16.5% of the total 

permit area.   

Feature Analyst showed significant promise for extracting vegetation features 

from the source images, including individual trees.  Feature Analyst’s ability to 

effectively utilize panchromatic and multispectral image sets suggests it is an 

effective tool for use with increasingly high resolution data available from 

commercial vendors. 

 

Additional Key Words: Remote Sensing, feature extraction, object recognition, landcover 

classification. 

_______________________________ 

1
 Paper was presented at the 2009 National Meeting of the American Society of Mining and 

Reclamation, Billings, MT, Revitalizing the Environment: Proven Solutions and Innovative 

Approaches May 30 – June 5, 2009.  R.I. Barnhisel (Ed.) Published by ASMR, 3134 

Montavesta Rd., Lexington, KY 40502. 
 2
 Michael Shank is a geographer with the Technical Applications and Geographical Information 

Systems (TAGIS) unit, West Virginia Department of Environmental Protection, Charleston, 

West Virginia 25304. 

    Proceedings America Society of Mining and Reclamation, 2009 pp 1227-1247 

     DOI: 10.21000/JASMR09011227 

rbarn
Typewritten Text
http://dx.doi.org/10.21000/JASMR09011227



1228 

Introduction 

The deployment of commercial high-resolution satellite sensors has dramatically increased 

the availability of high quality remote sensing products.  The spatial, and temporal, resolution of 

these sensors suggests new possibilities for monitoring surface mining activity at a more 

detailed, site-specific level.  At the same time, the extent of surface mining has increased rapidly, 

creating new challenges for understanding cumulative impacts to the physical and biotic 

landscape of Appalachia.  In West Virginia, entire complexes of a dozen or more adjacent 

interconnecting permits have evolved over the course of decades, making it increasingly difficult 

to quantify and visualize landscape changes over large areas, such as watersheds. 

The West Virginia Division of Environmental Protection (WVDEP) and the Office of 

Surface Mining’s (OSM) Charleston Field Office currently are investigating methods for 

analyzing high-resolution satellite image products to support the regulatory process.  This project 

is focused on issues relating to vegetation—including mapping vegetation types, percentage 

cover, and change over time—within a broad goal of identifying core capabilities of data 

resources and analysis methods that can address regulatory questions.  Phase one of the project 

(Shank, 2007) investigated the potential for calculating percent vegetative cover from satellite 

images, which is a factor in determining eligibility for bond release.  This paper specifically 

investigates the issue of vegetation change over time.  Central to this investigation are the use of 

vegetation indexes to identify specific change events, and the use of Feature Analyst software, by 

Visual Learning Systems, to identify and map change areas on a large surface mining complex in 

southern West Virginia. 

Study Area 

The study area is a subset of a large mining complex located in southern West Virginia 

(Fig. 1) that includes 18 surface mining permits issued to Hobet Mining between 1977 and 2004.  

The total permitted area for this complex is approximately 18 square miles, and includes permits 

ranging in status from active to phase III release.  

Older permits in this area have post-mining land uses that include rangeland, wildlife habitat, 

and pasture, while more recent permits have tended to favor forestland.  There are relatively 

large areas of herbaceous grasses on reclaimed areas, interspaced with deciduous trees, pines, 

and shrubs.  Deciduous plantings sometimes occur in blocks and rows, while other areas have 

been hydro-seeded and the pattern is indistinct.  Dense patches of bi-color lespedeza are clearly 
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visible in some areas, and autumn olive appears to be rapidly expanding in many areas.  Based 

on final planting reports and reclamation plans, dominant non-herbaceous species include 

autumn olive, black alder, bicolor lespedeza, Virginia pine and white pine. 

 
Figure 1. Study Area. 

 

A site visit was made on August 1
st
, 2007.  Trimble GPS receivers running ArcPad were used 

to locate the areas of interest identified from visual analysis of the satellite images used for the 

study.  A GPS-equipped camera was used to record vegetation types found on the site, and to 

confirm the causes of unusual events observed in the images. Over 100 georeferenced digital 

photographs were acquired documenting vegetation types and patterns within the study area. 

In addition to species identified on planting reports, the site visit identified additional 

volunteer species that included sycamore, black willow, red cedar, and ailanthus.  Bristly locust 

and bi-color lespedeza were identified in concentrated patches, along with smaller patches of 

blackberry, and several small fields dominated by goldenrod.  Several wetland areas contained 

dense concentrations of cattail, and often included black willow and sycamore nearby.  

A visual comparison of two satellite images of the study area, acquired in 2003 and 2007, 

indicated general growth and expansion of vegetation throughout the reclaimed areas.  Planted 

trees showed expanded crown diameter and more pronounced shadow characteristics due to 

increased height.  Autumn olive appeared to be expanding into areas once occupied by grasses.  

The remaining barren areas showed reduced size as herbaceous species developed.   
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Satellite Data 

The study used images acquired in 2003 and 2007 by the Quickbird satellite.  Quickbird is a 

commercial, high-resolution earth imagining satellite owned and operated by DigitalGlobe.  The 

satellite collects both multispectral and panchromatic images simultaneously.  The multispectral 

sensor produces a 4-band image, recording spectral radiance in the visible blue, green, red, and 

near infrared.  Multispectral image resolution is 2.4m, whereas the panchromatic image 

resolution is 0.6m. 

The first image was a subset of an archival scene captured on June 6, 2003.  The second 

image was contracted by OSM’s Technical Innovation and Professional Services (TIPS) 

program, and acquired on June 14, 2007.  The images were delivered in ‘ortho-ready’ format, 

which includes basic georeferencing and sensor corrections.  The West Virginia DEP performed 

orthorectification for terrain displacement using the 1/9 Arc-Second National Elevation Dataset 

provided by the USGS, and was precision georeferenced using ESRI’s ArcMap software.  A total 

of 11 control points were used, including 8 points collected using a Trimble GEO-XH GPS in the 

field.  Typically, the adjustments made by the precision georeferencing were relatively small, on 

the order of a few pixels.  The 2003 scene was then matched to the 2007 scene.  A spline 

adjustment was used in conjunction with 72 common tie points identified between the two 

scenes. 

Quickbird follows a sun-synchronous orbit, which maintains the angle of illumination for 

successive passes over a particular location.  Metadata for the images indicates both were 

collected between 16:00 and 17:00 GMT, or mid-morning local time.  The original pixel values 

were not modified prior to analysis.  However, the display software used to produce figures 

shown below performed a contrast stretch on each image individually.   

The two scenes are shown as false-color infrared in Fig. 2 and 3.  Significant new mining 

activity has occurred in the four-year interval, characteristically depicted as light blue areas in 

the center-west, and the northeast.  Recent reclamation activity also has taken place to the 

southwest and northeast.  The center of the scene contains numerous older permits in Phase I and 

Phase II release status with more established vegetation.  Grasses in this area are a darker grey-

blue, while shrub and tree species are mostly pink.  Undisturbed deciduous forest surrounding 

the mining complex appears bright red.  The 2007 scene also contains scattered clouds, and 

associated shadow, which typically are masked out prior to analysis. 
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Figure 2. Quickbird scene from June, 2003. 

 

 
Figure 3. Quickbird scene from June, 2007. 

Analysis 

Change Detection Overview 

1. Analyzing change is a common topic in remote sensing research.  The nature of the 

changes being investigated can vary considerably, from relatively short term events 

such as snow cover, flooding, and forest fires, to longer trends like suburban 
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development, deforestation, glacial retreat, or wetland loss.  Analysis of vegetation 

change often is performed on image pairs from the same sensor, collected at 

approximately the same time of year to minimize seasonal variation and the effect of 

sun angle. 

2. Methods for conducting change analysis vary widely, but most techniques can be 

characterized as either a visualization technique, or a mapping technique.  

Visualization techniques manipulate source data so that change events are revealed to 

an observer who can interpret them for some purpose.  Mapping techniques, in 

contrast, attempt to automate the extraction of change events, producing a dataset that 

allows them to be mapped and quantified.  This study applies both approaches in an 

attempt to identify and characterize significant vegetation trends within the study 

area. 

NDVI differencing  

Vegetation indices, particularly the Normalized Difference Vegetation Index (NDVI), have 

been applied to a wide variety of remote sensing vegetation studies.  Vegetation indices exploit 

the characteristic of vegetation to reflect significantly more light in the near-infrared portion of 

the electromagnetic spectrum than adjacent red frequencies (Fig. 4). In contrast, substrate 

materials tend to reflect similarly in both segments. 

.  
Figure 4. Typical vegetation reflectance patterns, superimposed with sensor 

bands associated with the Quickbird multispectral sensor  
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NDVI has been used to estimate leaf area index, to reveal stressed vegetation, to identify 

deforestation, and to monitor desertification (Avery and Berlin, 1992).  It also has been used to 

identify trace quantities of vegetation (Elvidge et. al., 1993) and estimate percent vegetation 

cover (Purevdorj et al., 1998) using satellite data.  Shank (2007) related NDVI to field 

measurements of vegetation cover on a recently reclaimed surface mine in order to estimate the 

overall percentage of the area that had been revegetated.   

NDVI is specified as:  

NDVI = (NIR – RED) / (NIR + RED)   (1) 

Where NIR is the recorded radiance in the near infrared, and RED is the recorded value in the 

red portion of the spectrum for a particular image pixel. NDVI values for non-vegetation 

typically produce small or slightly negative values, while vegetated areas produce values starting 

around 0.4 and approaching 1.0. 

On a basic level, direct comparison of NDVI values at two time intervals can be used to 

visually analyze vegetation changes within a study area.  Simple subtraction (NDVI2007 – 

NDVI2003) can be used to map the magnitude of change in the interval spanned by the two 

scenes.  Assuming there are no systemic impacts affecting one of the images, it is reasonable to 

interpret significant positive values as an increase in vegetation density, and negative values as a 

reduction. 

Of course, real-world measurements are often more complicated.  NDVI changes also can be 

indicative of a significant increase or decline in vegetation health due to stress conditions, such 

as drought, infestation, or herbicide.  Gong et.al. (2006) suggested adjusting the NDVI values of 

the latter scene to account for systemic impacts before comparing values.  A multiplicative term 

was applied, based on the mean difference in NDVI in the two scenes, calculated for areas in the 

image that were not subject to significant change: 

Adjusted_NDVIpost  =  NDVIpost  *  Ratio_C   (2) 

Where: 

Ratio_C  =  Mean_NDVIpre  /  Mean_NDVIpost   (3) 

Initial comparisons of the two Quickbird scenes indicated that some vegetation may have 

been affected by moderate drought conditions ongoing in 2007.  Drought impact was 

investigated by selecting ten sample areas lying outside the permit boundaries where no apparent 

changes had occurred.  The results, shown in Table 1, indicate that forested areas showed no 
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significant difference between the two dates, in fact having less variation than water and road 

samples.  Samples taken from grassy areas did show significant variation in some cases.  

However, these differences can be hard to interpret.  Though none of the fields appeared to be in 

use for agricultural production, they may have been cut periodically by their owners.  Similarly, 

grassy areas associated with residential areas may have been subject to watering or fertilization.  

In summary, while drought conditions may have contributed to an overall decrease in NDVI 

values for some grassy areas, this condition did not predominate across the scene, as evidenced 

by the lack of change for forested areas.  While it is considered valid to adjust NDVI values prior 

to comparison when warranted, it was not performed for this study. 

Table 1. Mean NDVI values for sample areas representing no-change areas. 

Cover Type 2003 NDVI 2007 NDVI Change 

Forest 0.75 0.76 0.01 

Forest 0.78 0.77 -0.01 

Forest 0.76 0.77 0.01 

grass, field 0.71 0.53 -0.18 

grass, field 0.56 0.56 -0.01 

grass, field 0.57 0.45 -0.11 

grass, large lawn 0.72 0.64 -0.09 

grass, large lawn 0.70 0.57 -0.13 

Road 0.10 0.12 0.03 

Water 0.13 0.17 0.03 

 

The NDVI difference image is shown in Figure 5.  Broad trends are easily visible throughout 

the scene, including an large drop in NDVI caused by the transition from forest to active mining 

at locations 1 and 2, and a large increase in NDVI due to the change from active mining to 

reclamation activity at 3 and 4.  Location 5 indentifies a forested area that did not change 

between the two dates.  Area 6 results from cloud cover in the 2007 scene, and area 7 represents 

cloud shadow.  Location 8 is a high voltage transmission line showing a significant reduction in 

vegetation,  due to the application of herbicide and tree cutting.    

Locations 9-11 in Fig. 5 show areas of NDVI loss in reclaimed areas.  Results in area 9 may 

be due to drought conditions.  It also is possible that grasses have replaced brushy species that 

exhibited a larger total leaf area.  However, since field work was not performed for the first 

image, this is not known for certain.  Finally, areas 10 and 11 were confirmed by field 

investigation to be caused by a die-off event, which will be investigated in detail below. 
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Figure 5.  NDVI difference image of the entire area, where red indicates a reduction in NDVI 

and green represents an increase. 

 

Close examination of the NDVI difference image suggested two areas for further 

investigation.  Figure 6 shows an area of exceptional NDVI loss, which field investigation 

revealed was due to canopy defoliation of black locust.  Visual examination of individual trees in 

the field indicated infestation by a boring insect, consistent with the locust borer, though a 

positive identification was not made.  At the time of the investigation, many of the affected trees 

had regenerated new growth near their base.  Figure 6(a) indicates a reduction in NDVI of more 

than 3 times the standard deviation between the two dates, relative to the “no change” samples 

collected for Table 1.  Figures 6(b) and 6(c) show the same area in 2003 and 2007, respectively, 

and Fig. 6(d) is a GPS-tagged photo of the area taken during the field investigation.  In the 

second part of the analysis, we will attempt to map the extent of this infestation and quantify the 

affected area. 

Figure 7 reveals an area of vegetation growth, which field investigation identified as 

primarily autumn olive.  Figure 7(a) shows areas of +2 and +3 times the standard deviation in 

green, with the corresponding areas from 2003 and 2007 in Figures 7(b) and 7(c), respectively.  

Figure 7(d) is a GPS-tagged photograph from the field investigation that confirmed the source of 
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this increase in vegetation.  As with the previous example, a more advanced analysis was 

designed to map the extent of this increase, which will be discussed below.   

 
(a) 

 
(b) 

 
(d) 

 

 
(c) 

 

Figure 6.  NDVI change analysis detected a significant loss due to defoliation of stands of black 

locust.  (a) Red areas show a decrease of greater than 3 standard deviations from the 

mean, relative to unchanged areas.  (b) Apparently healthy stands of black locust in 

2003. (c) The same stands in 2007.  (d) Defoliated trees captured using a GPS Camera.  

The trees have begun to regenerate near their base. 

Also apparent in Fig. 7(a) are several areas that depict a net decrease in NDVI between the 

two scenes.  This phenomenon is associated with areas dominated by grasses at the time of the 

field investigation.  Close visual inspection of available images suggests the current grasses may 

have replaced other vegetation types that reflected significantly more infrared.  The increased 

infrared response may indicate vegetation with significantly different leaf morphology, density, 
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or both.  However, a conclusive identification of  species occupying these areas in 2003 could 

not be made. 

 
(a) 

 
(b) 

 
(d) 

 

 
(c) 

 

Figure 7. Detail of an area exhibiting a large increase in NDVI due to vegetation growth.  (a) 

Green areas depict areas with an increase greater than +3 standard deviations from the 

mean.  (b) Area as it appeared in 2003. (c) The same area in 2007.  (d) GPS-coded 

field photograph showing the expansion was due to autumn olive. 

Landcover Classification and Feature Extraction 

NDVI differencing is an effective technique for visually analyzing changes in vegetation 

over time using matched image pairs, particularly since it can be easily symbolized to indicate 

both gain and loss in biomass or vigor.  This technique was found more useful than examining 

single and multiband difference images.  However NDVI differencing is not useful for mapping 

or quantifying specific types of change within a scene.   
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Historically, remote sensing research has devoted significant effort to developing and 

evaluating methods for extracting thematic information from images.  The general goal is to 

improve on the manual process of identifying features such as buildings or trees, or delineating 

boundaries between types of landcover.  This is because manual digitizing can be exceedingly 

slow, very expensive, and sometimes tedious.   

Traditional research in this area focused on the creation of thematic maps depicting basic 

landcover types, e.g. conifer, hardwood forest, shrub, grass, water, etc.  Methods usually relied 

on the degree to which these different landcover types exhibited distinct reflective characteristics 

in different bands of the electromagnetic spectrum.  However, these routines failed in 

circumstances where landcover types were similar enough to mix, or overlap.   

As researchers confronted the limits of spectral-based methods, the remote sensing landscape 

was radically altered by the launch of high-resolution digital sensors from commercial vendors, 

and by the introduction of laser-based elevation mapping systems.  Data products from these 

systems suggested new possibilities for feature extraction, such as identifying individual objects.  

At the same time, research has suggested that increased resolution could be problematic for 

established methods, due to a consequent increase in spectral variability for particular landcover 

types (Cushnie, 1987).  For example, the widely used Landsat sensor averaged radiance across 

an area about 30 meters square, whereas high-resolution sensors can capture partial canopies of 

individual trees, which can be oriented at any angle to the sun.     

These developments have lead to increasingly complex routines for extracting information.  

Some of these techniques attempt to segment an image into a set of ‘objects’ (Carleer et.al., 

2005) , then use a variety of metrics calculated from the spectral, textural, and neighborhood 

attributes to identify the object (Thomas et.al., 2003, Yu et.al., 2006).  Other approaches draw 

from developments in machine vision pursued by researchers in artificial intelligence.  Most of 

these approaches seek to effectively incorporate additional characteristics for identifying objects 

that human analysts use as a matter of course, such as shape, size, texture, shadow, and 

association (Blundell and Opitz, 2006). 

Feature Analyst 

Feature Analyst was designed to leverage advanced processing techniques behind a relatively 

simple user interface.  It is designed as a general purpose tool that can identify and extract 

objects from an image based on an exemplar set supplied by an analyst.  Blundell and Opitz 
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(2006) relate broadly the Genetic Ensemble Feature Selection (GEFS) approach used by Feature 

Analyst.  This approach employs a genetic algorithm to identify a set of neural networks that, 

working together, produce results that are significantly better than any single algorithm used 

alone.  Initial results can be refined using a process they call hierarchical learning, which 

incorporates analyst-identified errors and omissions during a second and third pass.  The Feature 

Analyst approach borrows from artificial intelligence research in machine vision, which is now 

being applied to high resolution satellite images. 

Feature Analyst was used for this study because it provided relatively sophisticated feature 

extraction capabilities that could be applied quickly to the problems being studied.  These 

capabilities were packaged as a general purpose tool that was relatively easy to use.  The 

software was installed as an extension of ESRI’s ArcGIS software, making the considerable 

visualization and analysis tools provided by this software accessible from a single user interface.  

While a custom-designed technique, or set of techniques, might have been developed that 

produced comparable results, the time needed for this development likely would have been 

excessive.  And the approach may have had limited application, or would have been difficult and 

time consuming to adapt to new problems.   

Mapping Black Locust Defoliation 

Examination of the NDVI difference image indicated a significant defoliation event, 

confirmed by a site visit, to be affecting stands of black locust.  The first test of Feature Analyst 

was to delineate the extent of this event.  For the analysis, a ten-band composite image was used 

as input, which included the four original spectral bands from the 2003 and 2007 images, plus 

the two NDVI bands.  The analysis process consists of selecting several training areas 

representing the feature of interest, setting a series of input parameters, and running the 

algorithm to produce an initial output that delineates similar features found within the scene.  In 

the second phase, the analyst examines the results and identifies a subset of features that are 

either correctly or incorrectly identified.  The algorithm is then run a second time to optimize the 

initial results.  The typical result is a significant reduction in erroneous features.  A third phase 

allows the analyst to add additional features that previously were missed.  However, for this 

analysis the results were far too permissive—far too many additional erroneous features were 

added—to be considered useful, and this step was not used.  Instead it was found more 

productive to add missed features to the initial training set and repeat the first step again. 
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Feature Analyst identified defoliation over an area totaling over 152 acres of reclaimed land.  

Most of the affected area occurred in a southern area, shown in Fig. 8, and a northern area shown 

in Fig. 9.  Mapping the defoliated area was judged significantly faster than manual digitizing, 

considering the complex nature of the shapes involved.  The software also identified areas that 

had not been identified previously by visual analysis. 

 
Figure 8.  Southern defoliation area delineated by Feature Analyst. 

Mapping the defoliation event was considered a good fit for Feature Analyst because success 

depended on the unique texture produced by the loss of canopy leaves in the 2007 image.  

Methods that depend solely on spectral characteristics likely would have been confused by other 

change events occurring in other parts of the scene.  While some ad hoc method of incorporating 

the use of texture could have been found, significant time would have been spent developing the 

method of analysis, instead of obtaining a final result. 
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 Figure 9. Northern defoliation delineated by Feature Analyst. 

Mapping Autumn Olive Expansion 

The second use of Feature Analyst involved mapping the rapid expansion of shrub species 

observed on the NDVI difference image in the previous section.  Close examination indicated 

that this problem was more difficult than the previous example, because shrubs occurred both in 

solid blocks and as individual trees on both images.  Therefore, the analysis was separated into 

two phases for each image, first by extracting solid blocks of shrub vegetation, and second by 

extracting occurrences of individual trees.  The results then were merged to create a single map 

of shrub occurrence for each date.  

Because Feature Analyst relies heavily on spatial pattern for extracting smaller features, it 

was decided to run the tree extraction process twice—once for smaller trees, and once for larger 

ones.  This allowed the texture pattern used by Feature Analyst to be adjusted for each size 

category.  Figure 10(a) shows a subset of the scene which includes several of the individual trees 

used for training Feature Analyst to identify larger trees.  Figure 10(b) shows the pattern selected 

for use by Feature Analyst for identifying these trees.  The presence of shadow to the upper left 

of individual trees was a key characteristic, making it important to size the training pattern within 
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the shadow area.  The pattern also should differentiate between the spectral response of the 

center pixel, made up of deciduous leaves, and surrounding pixels, which typically would be 

grass.  Figure 10(c) shows the initial features returned by Feature Analyst for the same area.  In 

Figure 10(d) these features have been converted into point locations and buffered by 3 meters,  

 
(a) 

 
(b) 

 
(d) 

 

 
(c) 

 

Figure 10.  Extraction of medium-large trees from the 2003 scene.  (a) Close-up, with training 

examples identified by yellow circles.  (b) Pattern selected for training Feature 

Analyst.  The shadow thrown by individual trees was a critical feature for 

identification.  (c) Results returned from the initial extraction.  (d) Initial extraction 

results converted to point features and buffered by 3 meters. 
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suggesting the ease with which basic GIS tools could be used to develop datasets for modeling 

tree canopy or attempting stem counts.   

Individual tree extraction was performed on four-band pan-sharpened images.  Pan-

sharpening was seen as a way to incorporate the superior resolution of the panchromatic image 

captured by the sensor, with the advantages of the multispectral image for discriminating 

between many types of landcover.    

Visual examination of the tree extraction results suggested the software has good potential 

for identifying individual trees and shrubs when sufficiently isolated.  The second pass, which 

trained on smaller exemplars, identified most of the remaining trees shown in Fig. 10.  Because 

shadow pattern was so critical, Feature Analyst also tended to identify tree objects within tightly 

packed rows, and occasionally other objects with a similar shadow pattern.  

During the analysis, it was discovered that the multispectral and panchromatic scenes were 

not always in perfect alignment, so that the color information became offset relative to the object 

in the panchromatic scene (see Fig. 10(b)—the color information is offset to the lower right).  

This misalignment should have negatively impacted the quality of the results, and it was 

considered remarkable that the software performed as well as it did under these circumstances.  

There currently are plans to correct this problem and run the analysis again, after which the 

results will be compared to manual delineation in order to provide more rigorous guidance in the 

use of the software for estimating the extent of deciduous canopy. 

Output from the individual tree extractions was combined with output from the extraction of 

solid blocks of deciduous plantings, creating composite maps of shrub cover for both dates.  

Figure 11 shows the composite cover for permit S502991, with the 2003 composite in light green 

against the darker green for 2007.  Figure 11 reveals the extent of expansion in deciduous shrub 

canopy during this period.  Over the time interval between the two images, deciduous shrub 

canopy increased from 32.2 acres in 2003 to 81.7 acres in 2007.  This represented an increase 

from 6.56% to 16.63% of the entire permit area. 

Results from this analysis are considered preliminary, in that the results suggest significant 

possibilities for mapping vegetation on a fairly detailed scale.  An examination of the results 

indicates no large-scale error sources that would significantly modify the basic conclusion—that 

the area within the permit occupied by shrub canopy, overwhelmingly consisting of autumn 

olive, has more than doubled in four years.  On the other hand, significant work remains to be 
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done to refine the analysis, for example, by doing a better job of aligning the panchromatic and 

multispectral images.  More work also needs to be done to investigate the impact of modifying 

some of the parameters set within Feature Analyst, and in developing a procedure for evaluating 

the accuracy of the results. 

 
Figure 11.  Permit S502991, showing deciduous shrub canopy in 2003 (light green) and 2007 

(dark green).  Canopy cover expanded from 32.2 to 81.7 acres between acquisition 

of the two images. 

Conclusion 

This paper attempts to address one facet in a broader question of the role of remote sensing in 

monitoring surface mining and reclamation activity.  This question has evolved significantly in 

the last decade, as new sensors have become available, and new techniques have been developed 

to analyze them.  These developments have coincided with rapid expansion in the size of surface 

mines in the Appalachian region, and new questions about the quality of landscape being 

constructed in the wake of mining activity.   
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Specifically, this study examined the utility of two methods for identifying vegetation change 

events on surface mines.  The first technique, NDVI differencing, was found to be a simple and 

effective method for visually identifying significant changes in vegetation using a matched pair 

of satellite images.  Feature Analyst was evaluated as a second technique for producing detailed, 

quantifiable data of change events.  Feature Analyst’s close integration with ArcMap GIS 

provided seamless access to extensive GIS analysis and visualization capabilities, which 

simplified and accelerated the analysis process.  Preliminary results demonstrated Feature 

Analyst’s effectiveness at extracting features with distinct texture.  The software appears to be 

particularly effective at integrating the panchromatic and multispectral images produced by 

commercial satellites, leveraging the advantages of higher spatial resolution and detailed texture 

information in the panchromatic scene, and the more detailed spectral information contained in 

the multispectral image. 

Despite its established promise, a significant amount of investigation is still necessary for 

understanding the affect of varying individual parameter settings associated with Feature 

Analyst, including resample level, training pattern selection, and whether or not to apply a 

histogram stretch.  There is an obvious need to devise objective metrics for evaluating the 

software’s capabilities for producing accurate results.  The case of extracting individual trees 

appears to be one area that deserves further investigation, since stem counts are an integral 

measure of reclamation success.   

Further work also remains in evaluating the software’s capability for identifying other 

distinctive vegetation types, which would help build a more detailed model of large reclaimed 

areas.  It was noticed during the extraction of autumn olive that the classifier skipped blocks of 

conifer and alder, which the software may be trained to identify, along with other distinctive 

features common on reclaimed and active sites 

Advances in spatial data gathering are not limited to commercial satellites.  A revolution is 

underway with the deployment of integrated sensors that capture laser elevation data (LIDAR) in 

conjunction with high resolution multispectral images with 20cm resolution.  Features that 

cannot be resolved from spaced-based sensors now fall within the capabilities of these aircraft 

mounted sensor packages.  More advanced, flexible tools are essential for rapidly and efficiently 

extracting useful information from these data sources. 
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