MINE WATER FOR HEATING AND COOLING USING GEOTHERMAL HEAT PUMP SYSTEMS¹

G. R. Watzlaf², T. E. Ackman² and W. A. Williams³

Abstract: In many regions of the world, abandoned mines represent a voluminous source of water that could be utilized for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania and West Virginia contains 5.1 trillion liters of water. The volume of water discharging from this seam totals 326,000 liters/min, which is sufficient to heat and cool 17,000 homes. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 65% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Additional Key Words: Abandoned underground mines, flooded deep mines, beneficial use

Bibliography

Donovan, J., B. Duffy, B. Leavitt, J. Stiles, T. Vandivort and E. Weener. 2004. WV173 Monongahela Basin Mine Pool Project. Final Report for DOE contract DE-AM26-99FT40463

Energy Information Administration, Department of Energy, Heating Oil and Propane Update, Accessed Nov. 23, 2005. URL: http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp

¹Poster paper presented at the 7th International Conference on Acid Rock Drainage (ICARD), March 26-30, 2006, St. Louis MO. R.I. Barnhisel (ed.) Published by the American Society of Mining and Reclamation (ASMR), 3134 Montavesta Road, Lexington, KY 40502

² George R. Watzlaf and Terry E. Ackman, Geosciences Division, National Energy Technology Laboratory, U. S. Department of Energy, Pittsburgh, PA 15236, email: watzlaf@netl.doe.gov ³ William A. Williams, Research and Development, CONSOL Energy Inc., South Park, PA 15129.