REMOVAL OF MANGANESE AND ZINC FROM MINING INFLUENCED WATERS¹

M.L. Chambers², A.L. Deaguero³, P. L. Sibrell⁴, T. R. Wildeman⁵

Abstract: The water from the Palmerton Zinc Superfund Site averages 57 ppm manganese and 328 ppm zinc. Treatment objectives were to reduce the total concentration to below 1 ppm manganese and 1 ppm zinc using a calcium coprecipitation process. A bench-scale pulsed limestone bed reactor was used to inundate the mine water with calcium carbonate. Various metals removal methods were tested in an attempt to precipitate the metals from the effluent of the pulsed limestone bed reactor. These methods included air stripping, using a limestone bed, and using a limestone channel. The most promising method for removing the metals from the water was the limestone channel, which reduced the concentrations to 33 ppm manganese and 7 ppm zinc.

Additional Key Words: Manganese, zinc, pulsed limestone bed reactor, limestone channel

¹Poster paper presented at the 7th International Conference on Acid Rock Drainage (ICARD), March 26-30, 2006, St. Louis MO. R.I. Barnhisel (ed.) Published by the American Society of Mining and Reclamation (ASMR), 3134 Montavesta Road, Lexington, KY 40502

²Marissa Chambers, Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401, email: <u>mchamber@mines.edu</u>
⁴Philip Sibrell, US Geological Survey, Leetown Science Center, Kearneysville, WV, 25430, email: <u>psibrell@usgs.gov</u>
⁵Thomas Wildeman, Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, email <u>twildema@mines.edu</u>

Bibliography

Watten, B.J., Sibrell, P.L., Schwartz, M.F., 2004, Effect of Acidity and Elevated P_{CO2} on Acid Neutralization within Pulsed Limestone Bed Reactors Receiving Coal Mine Drainage. Environmental Engineering Science, vol. 21. pp. 786-802.