EVALUATING THE EFFECTS OF WATER CHEMISTRY VARIATION ON THE MetPLATETM ENZYME BIOASSAY, WHEN USED TO SCREEN FOR METALS CONTAMINATION IN MINING IMPACTED SOILS AND WATERS¹

E.P. Blumenstein², J.F. Ranville³, and L.M. Choate⁴

<u>Abstract</u>: Mine tailings piles and abandoned mine soils, or mining impacted soils (MIS), are often contaminated by a suite of toxic metals wasted in the mining process. Enzymatic bioassays may provide an easier, less costly, and more time-effective toxicity screening procedure for MIS and MIS leachates than traditional tests (TCLP, *C. dubia*). This study evaluated the effects of variations in water chemistry parameters (hardness, alkalinity, DOC) on the commercially available enzymatic toxicity assay, MetPLATETM. MetPLATETM is a metal specific assay, which uses a modified strain of the *Escherichia coli* bacteria as the test organism to measure inhibition of β -galactosidase enzyme activity.

Additional Key Words: mine waste, contaminated soils, toxicity testing

¹Poster paper presented at the 7th International Conference on Acid Rock Drainage (ICARD), March 26-30, 2006, St. Louis MO. R.I. Barnhisel (ed.) Published by the American Society of Mining and Reclamation (ASMR), 3134 Montavesta Road, Lexington, KY 40502

²Eric P. Blumenstein, Graduate student, Department of Environmental Science and Engineering, Colorado School of Mines, Golden, CO 80401 ³James F. Ranville, Associate Professor, Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401 ⁴LaDonna M. Choate, United States Geological Survey, Denver Federal Center, Denver, CO 80225-0046