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Abstract.  Coal mining in New Zealand has caused perturbation of water resources 
and biodiversity.  Contaminants impairing local waterbodies include acidity, iron, 
aluminum, arsenic, manganese, nickel, zinc, copper, sulfate and suspended solids.  
Exposure of sulfur containing rocks, such as pyrite, to atmospheric oxygen during 
mining operations produces acid mine drainage (AMD).  Sulfuric acid and metal 
acidity are generated and can accentuate metal mobilization and bioavailability.  
Metals favor the dissolved state in acidic environments but form less toxic 
precipitates when exposed to adequate alkalinity.  Metal toxicity effects are 
synergistic dependent on metals speciation and their concentrations.   

New Zealand is in the initial stages of acid mine drainage mitigation and has yet 
to develop proven treatment technologies.  Implementation of passive treatment 
methods, such as engineered wetlands, have successfully reduced acid mine 
drainage impacts worldwide.  Design criteria for these systems are improving while 
their limitations are well documented.  We are currently collecting water quality 
and flow data from selected AMD-impacted sites.  We are in the process of 
designing pilot-scale engineered wetland systems to ameliorate acid mine drainage 
in New Zealand.  Sequential-treatment trains will be constructed and their 
performance evaluated in order to optimize design effectiveness. 

New Zealand acid mine drainage characteristics and complex topography offer 
unique challenges for implementing treatment systems.  The AMD typically 
contains very high aluminum concentrations (commonly exceeding 50 g/m3) and 
has an aluminum to iron concentration ratio of three to one.  Abundant steep 
topography can be exploited to create adequate driving head for implementing 
systems such as SCOOFI reactors while reducing and alkalinity producing systems 
can also be employed.  Precipitation of up to six meters per year contributes to 
dynamic hydraulic characteristics and will offer unique design and treatment 
challenges. 
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Introduction 

It is reported that coal mining in New Zealand began in the 1830s with mining districts 
becoming established in the 1870s for commercial purposes (Pattrick, 2004, Solid Energy, 
2005).  Solid Energy New Zealand Limited (SENZ) represents a state owned and operated coal 
company developing from a government trading enterprise established in 1901 and privatized in 
1987 as Coal Corporation of New Zealand.  Current production exceeds 4 billion kilograms of 
coal annually from its seven underground and opencast mines in the North and South Islands 
(Solid Energy, 2005).  Most acid mine drainage (AMD) impacts occur on the South Island from 
estuarine coal formations containing high concentrations of S (Pers. Comm. Paul Weber, 
Environmental Research Manager SENZ, 2005).  North Island coals and a significant amount of 
South Island coals do not typically generate AMD since they formed from lacustrine accretions 
containing low S concentrations.  Historical coal mining has resulted in contamination of 
numerous streams with AMD.  Solid Energy inherited many of these environmental liabilities 
and are in the initial stages of addressing AMD impacts from historical and current mining 
activities.  The contents of this report will focus on AMD issues from South Island coal mining 
as these sites are most impacted by AMD. 

Problem Statement 

 Numerous streams in New Zealand contain high concentrations of acidity and metals from 
unabated AMD runoff.  Carbonaceous mudstones and coal represent the primary sources of 
acidity by producing H2SO4 when exposed to oxygen (Trumm et al., 2005).  Metal cations also 
contribute acidity upon hydrolyzing with water.  Metals from the parent rock material leach into 
the aqueous phase when exposed to acidity.  Sandstones abutting the mudstones contribute 
metals leachate, and some S, when exposed to acidity but are not the major acidity contributors. 

 Pyrite (FeS2) represents the primary source of Fe. The primary sources of Al include 
potassium feldspar or microcline (KAlSi3O8), muscovite (KAl2(AlSi3O10)(F,OH)2) and kaolinite 
(Al2Si2O5(OH)4).  The sequence of reactions for pyrite oxidation is well documented (e.g. 
Watzlaf et al., 2003).  However, it is important to note that following initial pyrite oxidation, 
Fe+3 iron acts as an oxidizing catalyst for acidity generation.  This reaction is summarized as 
follows (Equation 1): 

                                   FeS2 + 14Fe+3 + 8H2O → 15 Fe+2 +2 SO4
-2 + 16H+                                  (1)              

Pyrite + Ferric Iron + Water → Ferrous Iron + Sulfate + Acidity 

 When potassium feldspar is exposed to acidity, kaolinite and silicic acid are produced 
(Equation 2) (Younger et al., 2002; Watzlaf et al., 2003).  Kaolinite is further degraded by 
acidity, resulting in mobile Al ions (Equation 3).  Aluminum precipitates in the presence of 
water (measured at a pH = 4.8 from Stockton Mine Water (Pers. Comm. Joseph Holman, 
Environmental Engineering Lab Technician, University of Canterbury, 2005)) and produces 
acidity (Equation 4).  Thus, Al-containing rock which is exposed to proton acidity results in the 
release of Al (Equations 2 and 3), coupled with the production of acidity upon Al(OH)3 
formation (Equation 4), and so the process of Al released into solution can be perpetuated. In 
New Zealand West Coast rock formations, Al-containing rocks and low pH (typically near or 
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less than 3) contribute to the relatively high Al to Fe proportions uncharacteristic of the majority 
of AMD water elsewhere. 

                              

                              KAlSi3O8 + H+ + 9/2H2O → 2H4SiO4 + 1/2Al2Si2O5(OH4)                         (2) 

Potassium Feldspar + Acidity + Water → Silicic Acid + Kaolinite 

 

                                      Al2Si2O5(OH4) + 6H+ → 2 Al+3 + 2H4SiO4 + H2O                                (3) 

Kaolinite + Acidity → Aluminum Ions + Silicic Acid + Water 

 

                                                  Al+3 + 3H2O → Al(OH)3 + 3H+                                                  (4) 

Aluminum Ions + Water → Aluminum Hydroxide (ppt) + Acidity 

 

Other metals such as As, Mn, Ni, Zn and Cu can also leach from source rocks under acidic 
conditions and increase AMD toxicity to aquatic species.    

Proposed Methodology 

 Passive treatment systems are proven treatment technologies if designed and implemented 
properly (Younger et al., 2002).  Possible systems may include inorganic media passive systems 
(IMPs).  Candidate IMPs include surface catalyzing oxidation of Fe+2 iron reactors (SCOOFIs) 
to exploit the New Zealand steep topography and oxic limestone drains and open-channel 
limestone reactors to generate alkalinity.  Engineered wetland types appropriate for New Zealand 
AMD include sedimentation ponds, reducing and alkalinity producing systems (RAPS), SO4

-2-
reducing bioreactors (such as compost wetlands) and aerobic wetlands, amongst others. 

 Our research consists of designing and evaluating the performance of multiple pilot-scale 
engineered wetlands to determine which systems offer the most cost effective treatment options 
for ameliorating AMD.  The initial six-month period will consist of characterisation of AMD at 
the research field site.  Characterisation of samples will quantify contaminant concentrations and 
loading variability during periods of high and low flows.  Basic water quality parameters 
including pH, turbidity, conductivity and temperature will be continuously recorded using data 
loggers.  Flow ranges will also be recorded using data loggers.  Multiple sampling trips will aim 
to comprehensively characterise the variability in seasonal loadings of metal contaminants to the 
impacted watershed. 

 Design criteria developed overseas will be adopted for choosing and sizing system designs.  
Systems will be designed and constructed to include adequate replication and variation in design 
parameters.  Different cell sequences will be considered to evaluate their treatment effectiveness.  
Rates of sedimentation and precipitation of metal-hydroxides, their rate-limiting steps and 
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characterising water throughout the treatment process, in addition to materials used and cost 
implications, will be considered in the final designs.  

Water and soil substrate samples will be collected and analysed periodically to determine 
chemical dynamics and metal speciation within the systems.  This data will provide information 
on the chemical transformations and consequent treatment efficiency of the systems.  Chemical 
modelling will be performed to evaluate treatment limits based on treatment performance 
measured from flow and chemical data.  An evaluation of the long term suitability of these 
systems and the potential for metal precipitates to remobilize will be considered.  Results will 
also be used to develop design criteria for passive treatment systems at other sites  Because every 
site is heterogeneous and offers unique challenges, system designs will be modified based on site 
characteristics, constraints, flow and contaminant concentrations.  Since this project officially 
commences January 2006, we have not yet ascertained the most appropriate designs.  These will 
depend on contaminant loading regimes deciphered by May 2006. 

Site Selection  

The site where the trialed engineered wetlands will be constructed is under final consideration.  
Efforts will focus on AMD on the West Coast of the South Island where unique challenges such 
as high Al concentrations and six meters of rainfall annually predominate.  A summary of 
candidate sites including advantages and disadvantages of site selection is given in Table 1. At 
present, Sullivan Mine is the preferred site for rehabilitating since it offers the best rehabilitation 
return for the efforts expended (see advantages). 

Current Data 

Sporadic water quality and flow data exists for numerous AMD sources and streams impacted 
by AMD on the West Coast.  However, data collection has not been consistent; quality assured 
or considered analytes necessary to obtain adequate design criteria at most sites.  The pH in 
many West Coast South Island streams is naturally acidic fluctuating between 4.0 and 5.0 
(Harding, 2005).  The pH of AMD is commonly less than 3.0 at source and throughout some 
impacted streams (Trumm et al., 2005).  Background Al concentrations in some non-AMD 
impacted streams can also exceed permitted trigger values (Pers. Comm. Phil Lindsay, 
Environmental Operations, SENZ, 2005).  At the Stockton site, acidity can range between 200-
800 g CaCO3/m3, dissolved Fe+2 iron of 15-50 g/m3, dissolved Al of 50-100 g/m3 and sulfates 
from 200-800 g/m3 (1 g/m3 = 1 mg/L).  Data collected from Sullivan Mine AMD between 
February 2001 and June 2002 contained an average pH of 2.8, 192 g acidity/m3 as CaCO3, 366 g 
SO4

-2/m3, 13.75 g dissolved Al/m3, 0.012 g dissolved As/m3, 41.58 g dissolved Fe/m3, 0.5 g 
dissolved Mn/m3, 0.12 g dissolved Ni/m3 and 0.7 g dissolved Zn/m3 (Trumm et al., 2005).  These 
concentrations for Al, Fe, Ni and Zn were all above the acceptable trigger values stipulated in 
New Zealand legislation (ANZECC, 2000). 
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Table 1. Site selection potential and priorities. 

Site Advantages Disadvantages Additional Comments 
Echo Mine/ 
Island Block 

1) Likely improvement of water 
quality and biodiversity.  
2) Good location for assessing 
effectiveness of SCOOFIs 
because of steep topography. 
3) Closest site to offices in 
Christchurch. 

1) Active mining from other 
companies on site. 
2) High level of uncertainty of 
controlling system inputs 
because of active mining. 
3) Adequate land area not 
available at all potential sites.  
4) Construction equipment and 
materials would have to be 
brought in from offsite. 

1) Multiple potential sites. 
2) Three separate streams 
receiving AMD. 
3) Most logical trial system 
site based on available land 
area and current mining 
operations would only 
protect a few hundred 
meters of stream. 

Stockton 1) Likely improvement of water 
quality and biodiversity.  
2) Actively mined by SENZ so 
construction equipment and 
technical/logistical support 
available on site. 
3) Adequate land area. 

1) Active mine with 
uncertainties regarding 
controlling system inputs such 
as sediment loading. 
2) Furthest site from offices in 
Christchurch.  

1) Multiple potential sites. 
2) High political pressure to 
mitigate AMD issues here. 
3) Receives the highest 
rainfall of all potential sites 
and also has the highest 
aluminum concentrations. 

Sullivan 1) Likely improvement of water 
quality and biodiversity.  
2) Adequate land area. 
3) Underground abandoned 
mine with consistent flow from 
adit prior to discharging into 
impacted stream. 
4) Most data available of all the 
site options.  
5) Located in a highly valued 
recreational area with 
numerous hiking trails. 
6) Treating the major 
contaminant source would 
reduce most AMD inputs into 
impacted stream and therefore 
allow for feasible stream 
restoration. 

1) Construction equipment and 
materials would have to be 
brought in from offsite. 
2) Minor road repairs need on 
access road. 

1) Two adits contribute 
AMD to Rapid Stream with 
most of the contaminant 
contribution (99 percent or 
more) from the lower adit. 

 

Regulatory Criteria 

The lack of historical background water quality data and dominance of endemic aquatic 
organisms in New Zealand make determining acceptable regulatory criteria challenging for 
freshwater environments (Harding et al., 2005).  Overseas toxicity data must be used with 
caution in the New Zealand context.  New Zealand environmental law is mandated in the 
Australian and New Zealand Environment and Conservation Council (ANZECC) Water Quality 
Guidelines (ANZECC, 2000).  Applicable toxicity data for freshwater ecosystems is represented 
as trigger values with four levels of protection based on percent of species not affected as shown 
in Table 2.  The 80-precent level of protection trigger values are typically mandated by local 
regional councils for streams impacted by AMD. 
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Table 2.  ANZECC trigger values (g/m3) for freshwater toxicants (ANZECC, 2000) 
 

Element Level of Protection (% Species) 

 99% 95% 90% 80% 

Al (pH<6.5) ID* ID* ID* ID* 

Al (pH>6.5) 0.027 0.055 0.080 0.015 

As3+ 0.001 0.024 0.094 0.360 

As5+ 0.0008 0.013 0.042 0.140 

Fe ID* ID* ID* ID* 

Mn 1.20 1.90 2.50 3.60 

Ni 0.008 0.011 0.013 0.017 

Zn** 0.0024 0.0080 0.015 0.031 

Cu** 0.0010 0.0014 0.0018 0.0025 

*   ID indicates insufficient data. 

** The values listed assume a hardness value of 30 g/m3 as CaCO3. 

Conclusions 

Passive treatment systems including engineered wetlands have been implemented worldwide 
for successfully ameliorating AMD.  It is believed that engineered wetlands can be successfully 
utilized in New Zealand once adequate water quality and flow data is collected and analyzed 
(O’Sullivan, 2005).  Before appropriate designs can be developed, research needs to be 
conducted to optimize system designs and sizing.  Cost-analysis needs to be performed to 
determine benefits and feasibility of engineered wetlands versus adopting more active 
(traditional) chemical dosing treatment approaches.  Long-term monitoring should be conducted 
to verify system function and determine long-term applicability.  Maintenance such as solids 
removal must be performed to ensure long term operation and prevent the systems from clogging 
with sediment, ferric and aluminium hydroxides. 
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