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Abstract. Objective classifications of pre-mine vegetation provide unbiased 

standards for mine revegetation, and therefore defensible bond release criteria.  In 

this paper I present a summary of multivariate classification techniques and 

briefly explain several fundamental algorithms.  In addition I discuss three items 

imperative for effective classification. These are:  1) an appropriate and effective 

dissimilarity/distance measure, 2) an effective classification methodology, and 3) 

an objective way to decide on an appropriate/optimum number of clusters.  I 

address these considerations by testing distance measures, evaluating 

classification methods, and finding appropriate pruning levels for classifications 

of alpine and pre-mine steppe vegetation data from the Northern Rocky Mountain 

region.   

1) With respect to distance measures; Bray-Curtis and Jaccard dissimilarities were 

the most effective as determined by methods which compared environmental 

gradients with phytosociological distance.   

2) With respect to classification typologies; eight commonly used methods were 

compared with nine classification evaluator algorithms.  Three hierarchical 

agglomerative methods: flexible beta (β = -0.25), average linkage, and Ward’s 

linkage generally outperformed other methods across a large number of 

clustering solutions.   

3) With respect to appropriate number of clusters; classification evaluators 

identical to those used for comparing classification typologies were adapted 

for straightforward graphical presentation of optimal classification solutions. 
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Introduction 

Identification of vegetation patterns (e.g. communities) is vital to effective land reclamation.  

This is true since recognition and description of vegetation patterns provides both objectives for 

reclamation, and potential information about vegetation/environmental relationships important to 

reclamation. Objective vegetation classifications are particularly important for mine reclamation.  

Such community descriptions can provide standards which regulators can use as criteria for 

revegetation success and bond release. 

There have been both non-quantitative and quantitative attempts to find patterns in vegetation 

data.  One classic non-quantitative approach is relevé table-sorting (Braun-Blanquet, 1964).  

Using this method one subjectively locates clusters by moving columns and rows of vegetation 

data matrices.  A second method involves designating communities in the field based on 

subjective interpretation of vegetation physiognomy and species composition.   

Obviously categorization using non-quantitative methods relies largely on the skills and 

expertise of the categorizer and quality of results may vary greatly.  Furthermore, it should be 

apparent that subjective classifications are not reproducible (perhaps even by the original 

categorizer).  It should be emphasized that non-quantitative approaches may be the best option in 

some circumstances; for instance when categorizing combined datasets which were created using 

entirely different sampling methods (see Weaver and Aho, 2006)  

Quantitative categorization (i.e. cluster analysis) encompasses a large number of 

mathematical methods which allow objective classification of vegetation data.  It can be argued 

that I use the term “objective” somewhat loosely since cluster analysis models each have their 

own set of assumptions and constructs (I will show that some model constructs may be more 

valid than others).  Nonetheless, it cannot be argued that quantitative methods 1) allow far more 

objectivity than non-quantitative techniques, and 2) provide reproducible and defensible results.  

Cluster analysis considerations 

Three considerations are necessary for effective cluster analysis.  First, an appropriate 

distance/dissimilarity measures must be chosen to describe variability in the data.  Second an 

effective classification strategy (hierarchical or non-hierarchical) and linkage methodology (see 

explanation below) must be chosen.  Third, an appropriate number of clusters must be decided 

on.     

1. Deciding on an appropriate distance measure.  Before addressing this topic an explanation of 

distance measures may be helpful.  The simplest quantitative distance measure is generally 

acknowledged to be Euclidean distance.  This algorithm is shown as Equation 1 for sites i and h, 

where aij = abundance of species j (j = 1, 2,..p) in site i.  The calculation of Euclidean distance 

matrix for three sites using two species is described in Fig. 1.   
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calculated for all pairwise site 

combinations.

3. Resulting Euclidean distance matrix.
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Figure 1. Procedure for calculating a Euclidean distance matrix comparing three hypothetical 

sites. 

To use cluster analysis one must decide on a distance measure to represent variability in the 

vegetation data (possible exceptions include k-means analysis and TWINSPAN which use 

Euclidean and chi-squared distance respectively as an implicit part of their algorithm).  A 

number of ecologists have evaluated the performance of distance measures by comparing 

environmental distance (i.e. differences along gradients) to distance in ordination space (Beals, 

1984; Faith et al., 1987; De’ath, 1999).  If species distributions are well described by 

environmental variables, then a strong association should exist between distances in species 

space and differences in environmental space.  Thus, poor correlations represent poor 

performance by the distance measure.  Obviously this analysis becomes more meaningful as the 

number of important environmental variables increases in ones measure of environmental 

distance. 

2. Comparing classification efficacy methods using internal tests.  Clustering methods can be 

broken into two general strategies: hierarchical and non-hierarchical.  Hierarchical methods find 

groups nested hierarchically within other groups.  Non-hierarchical methods group data in 

discrete clusters without regard to hierarchical structure.  Aside from major differences between 

hierarchical and non-hierarchical constructs, classification methods differ mainly with respect to 

their method of linkage (Lance and Williams, 1967).  Linkage is the way classifications define 

distance between clusters (i.e. average, median, single, complete, centroid etc.).  For further 

explanation see Kaufman and Rousseeuw (1990), and McCune and Grace (2002).  The linkage 

of three hierarchical methods (single, complete and average linkage) are compared in Fig. 2.  

Classification methods can be compared with external or internal tests (Gauch and Whittaker, 

1981; Dale, 1991). External tests compare the results of a classification with previously 

established standards.  Examples include recovery of clusters embedded within simulated 

datasets (Milligan and Cooper, 1985; Belbin and McDonald, 1993; Hirano et al., 2002), or 

recovery of subjective a priori clusters from ecological data (Cao et al., 1997).  In contrast, 

internal tests use the characteristics of the classifications themselves to gauge effectiveness.  

Examples include cophenetic correlation (Sneath and Sokal, 1973), and maximization of 

between cluster variance (Orloci, 1967).  Since a priori “correct” cluster solutions are not 

available in non-synthetic data, I will use internal evaluators to compare classification efficacy in 

this report.   
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Figure 2. Distance between two clusters for three hierarchical methods (a) single linkage, (b) 

complete linkage, and (c) average linkage.  Single linkage uses the distance of the two 

closest objects between the clusters to represent intercluster distance.  Complete 

linkage uses the two most distant objects.  Average calculates the average distance. 

Adapted from Johnson and Wichern (1998). 

3. Deciding on an appropriate number of clusters “pruning analysis”. Classification results using 

hierarchical methods can be presented in a tree-format (Fig. 3).  This diagram presents an 

overview of the hierarchy and relatedness of sites, but gives only limited information about how 

many “real” clusters may exist. Lines drawn on Fig.3 indicate where the tree would need to be 

“pruned” for solutions with 3, 5, and 11 clusters.  It should be obvious that any other clustering 

solution from 1 to N clusters (where N = number of classified objects) is also possible.    
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Figure 3. Classification with 3, 5 and 11 cluster solutions indicated on the hierarchical tree. 

A large number of methods have been proposed as stopping/pruning criteria for cluster 

analyses (Dale, 1991; Milligan and Cooper, 1985).  Since internal tests (discussed in the section 

above) measure the intrinsic effectiveness of classifications, they may also be used as pruning 

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

1

2

1

2

1

2

3

3

3

4

4

4

5

5

5

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

1

2

1

2

1

2

3

3

3

4

4

4

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

1

2

1

2

1

2

3

3

3

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

1

2

1

2

1

2

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

d24(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

(a)

(b)

(c)

Cluster distance

d15

d13+d14+d15+d23+d24+d25

6

1

2

1

2

1

2

1

2

1

2

1

2

3

3

3

3

3

3

4

4

4

5

5

5



 5 

criteria, by testing the effectiveness of individual pruning level/clustering solutions (Milligan and 

Cooper, 1985).   

Goals 

I addressed the three considerations listed above by 1) testing the performance of distance 

measures, 2) evaluating the effectiveness of different classification methods, and 3) finding 

appropriate pruning levels for classification solutions.  I did this by classifying and evaluating 

two distinct vegetation datasets from the Northern Rocky Mountain region of the United States.   

Methods 

Datasets 

Two vegetation datasets were used for this study.  The first consisted of alpine data from 

three high altitude ranges in the Northern Rocky Mountains (the Washburn, Absaroka and 

Beartooth Ranges), and was provided by the author’s dissertation work.  This dataset contained 

178 plots and 180 species.  A second dataset was acquired for a prairie steppe ecosystem from 

Southeast Montana which contained 113 plots and 173 species.  Quantitative responses for both 

datasets were ocular estimates of species cover within transects. 

Data analysis 

1. Distance comparisons.  Six commonly used distance measures:  Euclidean, Bray-Curtis, 

Canberra, Jaccard, Kulczynski, and Manhattan were compared.  Distance measures were 

evaluated by comparing sociological distance calculated by each measure to environmental 

distance. Environmental distance was calculated using two steps.   

First environmental variables were standardized using Equation 2 so that they would not 

unequally weight environmental distance.  

i
i

x
STx






                             (2) 

Where ST(xi) = the standardized value for response i, (i = 1,2,....,n), from variable x (x = 1,2,...,z) 

Second, the sum of absolute values of the differences between environmental responses at all 

sites was calculated (ENVDIST; Equation 3).     

    






z

x

n

ij
i

ji STxSTxENVDIST
1 1

                 (3) 

The association between the vector ENVDIST and dissimilarity matrices resulting form the 

six distance measures was measured with Spearman’s rank tests. 

Due to the strength of environmental data from the Washburn Range, only this data (40 plots, 

80 species) was used for distance measure comparisons.  Sixteen environmental variables were 

used to describe environmental distance.  These were: soil %N, soil %C, soil P (mg/kg), 

elevation (m), slope(degrees), aspect (degrees from north), annual solar radiation (MJ cm
2
 yr

-1
), 

%rock cover, %soil cover, pH, conductivity (mmhos cm
-1

), %sand, %silt, %clay, number of days 
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soil were warmer than 10˚C at 10cm depth, and number of days soils were wetter than -0.12 MPa 

at 10cm depth.   

2. Classification comparisons. Eight classification methods commonly used by vegetation 

ecologists were evaluated.  They consisted of five hierarchical agglomerative methods: flexible β 

linkage (Lance and Williams, 1967), Ward’s method (Ward, 1963), complete linkage (McQuitty, 

1966), average linkage (Sokal and Michener, 1958), and single linkage (Sokal and Sneath, 1963), 

a hierarchical divisive method: TWINSPAN (Hill, 1979), and two non-hierarchical methods: 

partitioning around medoids (PAM; Kauffman and Rousseeuw, 1990), and k-means analysis 

(Hartigan and Wong, 1979).  The value β = -0.25 was used for flexible β linkage as 

recommended by McCune and Grace (2002).  TWINSPAN was performed using default 

parameters from PC-ORD (McCune and Mefford, 1999).  Random starting points were used as 

initial cluster centers for k-means analysis.   

Classification methods were compared using nine internal classification evaluators, most of 

which have been well tested and reviewed in the literature.  The evaluators are summarized in 

Table 1.  For evaluator equations see Aho (2006), or Aho et al. (2006).    

Both datasets were classified with each of the 8 classification methods, and classifications 

were pruned to find their 20 simplest solutions (2 to 21 clusters).  Each of these solutions was 

evaluated by each of the nine classification evaluators to compare solution efficacy.  For both 

datasets, median values across the 20 solutions, confidence intervals for medians, and maximum 

values (best solution) across the 20 solutions were determined for each evaluator assessment of 

each method.  Medians were used as estimates of evaluator central tendency since distributions 

of evaluator responses were generally non-normal.  Confidence intervals for medians were 

calculated from the interquartile range, and are based on the asymptotic normality of the median 

for roughly equal sample sizes for two medians being compared (McGill et al., 1978, pg. 16). 

Differences among methods with respect to median evaluator response were determined by 

Mann Whitney non-parametric pairwise tests.  Significance levels were adjusted for 

simultaneous inference using Dunn’s (1964) procedure.  While Kruskal-Wallis tests were run on 

raw (non-standardized responses), standardized values are presented in the results to allow better 

comparability among evaluators.  Responses were standardized using Equation 2. 

3. Pruning analysis.  The classification evaluators listed in Table 1 were also used to find the best 

clustering solutions from the best overall methodologies (the best overall methodologies being 

determined from the classification comparison step described above). Comparisons were made in 

two ways:  1) responses of standardized evaluator responses were compared across cluster levels 

(i.e.  2 clusters, 3 clusters,...., 21 clusters); and 2) residuals from standardized evaluators 

responses from fits to linear models were compared across cluster levels (Equation 4).    

ei = Yi - Ŷi                             (4) 

Where Yi are observed values and  Ŷi are fitted values from a linear regression model. 

Responses were standardized using Equation 2.  The second comparison method was used to test 

and compensate for linear artifact in evaluator responses across cluster levels (i.e evaluators 

whose responses always increase/decrease with number of clusters).  An example of this is 

demonstrated in Fig. 4. 
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Table 1.  Summary of classification evaluators used in this paper.  For evaluator equations see 

Aho (2006), or Aho et al. (2006).    

 
Evaluator  Optimality criteria Comments [reference]* 

Average Silhouette Width (ASW) 
(ASW,  Rousseeuw 1987) 

 

Low within-cluster dissimilarity and 
high dissimilarity of samples to nearest 

neighbor cluster. 

 

Use of nearest neighbor cluster 
provides “local” criterion.  Useful for 

seeking compact, widely separated 

clusters [1] 

     

Partition Analysis ratio 

(PARTANA) 

(Roberts 2005) 

Low within-cluster dissimilarity and 

high dissimilarity of samples within 

clusters to samples outside of clusters.  

 

 “W/B”, a highly similar algorithm [2] 

was found effective for cluster 

recovery [3], but ineffective as a 

stopping criterion [4].    
 

C-Index 

(Hubert and Levin 1975) 

Low within-cluster dissimilarity, with 

respect to dmin and dmax coefficients (see 

Aho et al. 2006). 

  

Found effective for cluster recovery, 

and as a stopping criterion [3,4].  

Minimum response = optimal solution. 

 

Gamma 

(Goodman and Kruskal 1954) 

High number of concordant compared to 

non-concordant quadruples (see Aho et 

al. 2006). 
 

An adaptation of this algorithm [5] was 

found to be effective for cluster 

recovery, and as a stopping criterion 
[3,4]. 

 

Point Biserial Correlation (PBC) 

(Brogden 1949) 

Low within cluster dissimilarity. 

 

Found effective for cluster recovery 

[3,6], May underestimate number of 
clusters as a stopping criterion [4].   

 

Indicator Species Analysis (ISA)  

(Average p-value)  
(Dufrêne and Legendre 1997) 

High fidelity and abundance of species 

within particular clusters.  ISA-values 
are tested for significance with Monte-

Carlo procedures to calculate p-values.    

 

Found useful as a stopping criterion 

[7,8].  Proposed as a procedure for 
comparing classification 

methodologies [8]. 

Indicator Species Analysis (ISA)  

 (Number of significant indicators, α 

= 0.05) 

(Dufrêne and Legendre 1997, McCune 

and Grace 2002) 

 

See explanation above. Found useful as a stopping criterion 
[7].   

Morisita’s index of niche overlap 

(adapted from Horn 1966) 

High proportional occurrence of species 

within single clusters. 

An unbiased estimator of niche overlap 

[9].  Highly similar to ISAMIC [10].  

 

Indicator Species Analysis 

Minimizing Intermediate 

Constancies (ISAMIC)   

(Roberts 2005) 

Consistent presence or absence of 

species within single clusters. 

 

Highly similar to Morisita’s index of 

niche overlap [10]. 

 

* 1 = Kaufman and Rousseeuw (1990), 2 = McClain and Rao (1975), 3 = Milligan (1981), 4 = Milligan and Cooper 

(1985), 5 = Baker and Hubert (1975), 6 = Milligan (1980), 7 = McCune and Grace (2002), 8 = Dufrêne and 

Legendre (1997), 9 = Smith and Zaret (1982), 10 = Aho et al. (2006).   
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Figure 4. Converting evaluator responses (upper figures) to residuals from linear models 

lower figures).  This is demonstrated for evaluators with possible linear artifact 

(a), and without linear artifact (b).  Note that while predicted optima for the 

evaluator with linear artifact (a) are radically adjusted, (b) is unchanged. 

 

Computational methods 

All classifications were run in PC-ORD (McCune and Mefford, 1999) except for PA M and 

k-means analysis which were run in R (R development core team, 2005). Coding of evaluators 

and all other statistical programming was done in R. 

Results 

1. Distance comparisons 

While all distance measures showed significant association with environmental differences 

using Spearman’s rank correlation tests (p < 0.001; Fig. 5), Bray-Curtis and Jaccard’s 

dissimilarity explained more of the variability in environmental difference than the other four 

distance measures (rs = 0.4, Fig. 5).  The worst measures for explaining variability were 

Euclidean and Manhattan distance (rs = 0.28 and 0.214 respectively, Fig. 5).  All six distance 

measures showed a propensity to lose sensitivity (i.e. asymptote) as environmental distance 

increased (Fig. 5).     

2. Classification comparisons  

The majority of the classification evaluators found average linkage, flexible β = -0.25 and 

Wards linkage to be the best classification methods. Out of 18 Kruskal-Wallis tests comparing 

evaluator responses (i.e. 9 evaluators · 2 datasets = 18 tests; Table 2), average linkage and 

flexible β = -0.25 were the best method in 13 tests, while Ward’s linkage was the best method in 

12 tests (Table 2).  Note that several methods may “tie” for best evaluator response since their 

medians may not differ significantly. Poorest methods were k-means analysis and TWINSPAN 

which had the best response in only 1/18, and 3/18 cases respectively (Table 2). 
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Figure 5.  The association between sociological distance and the sum of standardized 

environmental differences (Equations 2, 3), using 6 different methods to calculate 

sociological distance: (a) Bray-Curtis, (b) Euclidean, (c) Canberra, (d) Jaccard,  (e) 

Kulczynski, and (f) Manhattan.  

(a) (b) 

(c) (d) 

(e) (f) 
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Table 2. Medians for standardized evaluator responses and 95% confidence intervals for medians (see McGill et al., 1978 for 

procedure) calculated across 20 different clustering solutions (2-21 clusters) for each methodology.  Methods with the same 

letter are not significantly different at α = 0.05 using Kruskal-Wallis multiple comparisons [simultaneous inference adjusted 

using Dunn’s (1964) procedure].  Best responses in each column are bolded.  

 
  ASW   1-C index   Gamma   PARTANA    PBC  

 alpine prairie Alpine Prairie Alpine Prairie alpine prairie alpine prairie 

Average 0.5 ± 0.7 AB  1.0 ± 0.5 A  0.6 ± 0.3 AB  0.9 ± 0.3 A  0.7 ± 0.2 A  0.6 ± 0.3 A -0.2 ± 0.1 AB  0.3 ± 0.1 A  0.7 ± 0.7 A  1.5 ± 0.3 A 

Complete -0.6 ± 0.8 BC  0.1 ± 0.2 CD  0.0 ± 0.3 C  0.1 ± 0.4 BC  0.5 ± 0.4 AB  0.4 ± 0.4 A -0.2 ± 0.1 BC -0.1 ± 0.3 BC  0.4 ± 0.8 A  0.0 ± 0.1 B 

Flexible  1.1 ± 0.3 A  0.8 ± 0.1 A  0.2 ± 0.3 BC  1.1 ± 0.3 A  0.7 ± 0.6 AB  1.0 ± 0.4 A -0.2 ± 0.1 ABC  0.5 ± 0.1 A  1.1 ± 0.4 A  0.8 ± 0.4 AB 

k-means -0.6 ± 0.2 C -0.4 ± 0.2 CD -1.7 ± 0.3 D -1.3 ± 0.2 C -1.9 ± 0.1 C -0.6 ± 0.4 C -0.4 ± 0 D -0.8 ± 0.2 C -1 ± 0.2 B -1 ± 0.2 C 

PAM  0.2 ± 0.2 AB  0.2 ± 0.1 BC -0.2 ± 0.1 C  0.2 ± 0.3 BC  0.5 ± 0.2 AB  0.6 ± 0.3 AB -0.2 ± 0 ABC  0.1 ± 0.2 BC  0.6 ± 0 A -0.4 ± 0.2 C 

Single -0.8 ± 0.4 C -1.6 ± 0.3 D  1.6 ± 0.2 A -0.5 ± 0.1 C  0.6 ± 0.3 A -1.3 ± 0.1 C 0.2 ± 0.7 A -0.1 ± 0.3 BC -1 ± 0.1 B -1 ± 0.3 C 

TWINSPAN -0.9 ± 0.1 C -1.6 ± 0.7 CD -0.7 ± 0.0 D -0.5 ± 0.2 C  0.1 ± 0.1 BC  0.0 ± 0.1 BC -0.3 ± 0 C -0.3 ± 0.1 C  0.3 ± 0 A  0.0 ± 0.6 BC 

Ward  1.0 ± 0.2 AB  0.7 ± 0.1 AB  0.1 ± 0.2 D  0.7 ± 0.4 AB  0.7 ± 0.5 AB  0.8 ± 0.4 A -0.2 ± 0 ABC  0.3 ± 0.3 AB  0.8 ± 0.3 A  0.1 ± 0.3 BC 

 

 
  ISAMIC   1-ISA p-val.   ISA sig indicators   1 – Mor.index    High scores  

 Alpine prairie Alpine Prairie alpine prairie alpine prairie  alpine prairie total 

Average  1.1 ± 0.1 A  0.2 ± 0.4 CD -0.7 ± 0.3 CD 0.0 ± 0.1 B -1.3 ± 0.0 D -0.9 ± 0.2 C  1.2 ± 0.1 A  0.7 ± 0.2 A  7 6 13 

complete  0.4 ± 0 A -0.4 ± 0.2 D -0.1 ± 0.3 CD 0.2 ± 0.1 B -1.1 ± 0.1 D  0.1 ± 0.2 B  0.8 ± 0.1 A -0.2 ± 0.3 C  4 1 5 

flexible -0.5 ± 0.2 B -0.5 ± 0.2 D  0.8 ± 0.1 A 0.4 ± 0.1 AB  1.2 ± 0.2 A  0.5 ± 0.2 A -0.7 ± 0.2 B -0.4 ± 0.2 C  6 7 13 

k-means -0.8 ± 0.3 B -0.1 ± 0.2 D  0.3 ± 0.1 BC 0.1 ± 0.2 B  0.0 ± 0.1 C  0.3 ± 0.1 A -0.9 ± 0.2 B -0.6 ± 0.3 C  0 1 1 

PAM -0.7 ± 0.2 B -0.4 ± 0.2 D  0.8 ± 0 A 0.5 ± 0.2 A  1.1 ± 0.1 AB  0.7 ± 0.3 A -0.8 ± 0.1 B -0.3 ± 0.3 C  6 3 9 

single  1.9 ± 0.1 A  2.6 ± 0.4 A -1.9 ± 0.1 D -2.1 ± 0.2 C -1.1 ± 0.1 B -2.1 ± 0.3 D  1.4 ± 0.1 A  1.7 ± 0.1 A  5 2 7 

TWINSPAN -0.6 ± 0.3 B  0.0 ± 0.2 BC  0.6 ± 0 AB  0.5 ± 0.1 A  0.0 ± 0.3 BC -0.2 ± 0.3 BC -0.2 ± 0.3 B  0.5 ± 0.3 B  2 1 3 

Ward -0.5 ± 0.2 B -0.5 ± 0.1 D  0.9 ± 0.1 A  0.6 ± 0.1 AB  1.2 ± 0.1 A  0.6 ± 0.2 A -0.7 ± 0.2 B -0.5 ± 0.2 C  6 6 12 
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3. Pruning analysis  

Since flexible β = -0.25 generally outperformed other methods in tests described above, 

classifications using this method for the prairie and alpine datasets were examined with pruning 

analysis (Figs. 6,7, Tables 3, 4).  Some evaluators (particularly ISAMIC and Morisita’s index of 

prey preference) showed propensity for linear artifact (i.e. evaluator responses appeared to 

always increase with increasing numbers of clusters).  As a result compensation for linear 

increase caused predictions of cluster optima to differ dramatically from those of simple 

standardized responses, particularly in the alpine dataset (compare Figs. 7b and 7d).  Indeed, 

patterns of linear increase with numbers of clusters may be valid for the alpine dataset.  This is 

demonstrated by the fact that almost all evaluators predicted the optimum number of clusters to 

be greater than the maximum number of clusters tested (i.e. > 21 clusters, Fig. 7a, 7b, Table 4).   
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Figure 6.  Pruning analysis for flexible β = -0.25 classification of the pre-mine dataset.  (a) 

Standardized evaluator responses. (b) Average standardized evaluator responses. (c) 

Residuals from evaluator responses plotted against linear models. (d) Average 

residual responses.   

(a) (b) 

(c) (d) 
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Table 3. Summary of Fig. 6.  A = ISAMIC, B = ASW, C = C.index, D = Gamma, E 

= ISA.pval, F = ISA.sig.inds, G = Morisita, H = PARTANA, I = PBC. 

 

 A B C D E F G H I Avg. 

Standardized evaluators (Figs. 6a and 6b)   

Max cluster 20 4 21 21 3 10 15 2 4 15 

Min cluster 3 17 6 3 2 2 2 6 2 2 

Residuals from stand. evals. (Figs. 6c and 6d)   

Max cluster 7 4 12 11 3 10 4 2 4 4 

Min cluster 3 17 6 2 2 2 2 6 2 2 
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Figure 7.  Pruning analysis for flexible β = -0.25 classification of the alpine dataset.  (a) 

Standardized evaluator responses. (b) Average standardized evaluator responses (c). 

Residuals from evaluator responses plotted against linear models. (d) Average 

residual responses.   

 

(a) (b) 

(c) (d) 
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Table 4. Summary of Fig. 7.  A = ISAMIC, B = ASW, C = C.index, D = Gamma, E = 

ISA.pval, F = ISA.sig.inds, G = Morisita, H = PARTANA, I = PBC. 

 

 A B C D E F G H I Avg. 

Standardized evaluators (Figs. 7a and 7b)     

Max cluster 21 21 21 21 9 9 20 21 21 20 

Min cluster 3 2 7 2 2 2 3 2 2 2 

Residuals from stand. evals. (Figs. 7c and 7d)    

Max cluster 2 6 2 12 9 9 5 12 10 10 

Min cluster 3 2 7 7 2 21 17 7 2 21 

Discussion 

1. Distance comparisons 

Bray-Curtis and Jaccard’s distance performed well for the experimental dataset, while 

Manhattan, and Euclidean distance performed poorly. The strength of Bray-Curtis and Jaccard 

for measuring distance in ecological datasets has been demonstrated by other authors (Beals, 

1984; Boyce and Ellison, 2001).  The poor performance of Euclidean and Manhattan distance 

may have to do with their incompatibility with vegetation data.  Vegetation species data across 

sites tends to be positively skewed, i.e. there are many zeros (absences) where a species does not 

occur.  Unlike the other four measures which are indexes which range from 0 to 1, Manhattan 

and Euclidean distance do not have a fixed upper bound for sample units that have nothing (no 

species) in common (Roberts. 2005).  

The loss of sensitivity of distance measures as environmental distance increases 

(demonstrated by the curvilinear relationship of sociological to environmental distance in Fig. 5), 

is a characteristic apparently inherent to all distance measures (McCune and Grace, 2002).  

Euclidean distance not only loses sensitivity, but is prone to introducing considerable error at 

moderate to high environmental differences (McCune and Grace, 2002). 

2. Classification comparisons  

The nine classifications evaluators generally found flexible β = -0.25, average linkage, and 

Ward’s method to be effective (Table 2).  A number of authors have recommended flexible β = -

0.25 since it produces effective and space conserving clusters similar to Ward’s method, but is 

compatible with non-Euclidean distances (Lance and Williams, 1967; McCune and Grace, 2002).  

Average linkage has been widely recommended as an intuitive and effective method for 

detecting clusters with spherical or ellipsoidal shapes (Cunningham and Ogilvie, 1972; Milligan 

and Isaac, 1980; Milligan, 1980; Kaufman and Rousseeuw, 1990).  Ward’s method is generally 

effective with spherical multivariate distributions (Kaufman and Rousseeuw, 1990; Hirano et al., 

2002), however, since it is based on a sum of squares criterion, Ward’s method may perform 

poorly if cluster populations are unequal in size or have unequal cluster diameters (Kuiper and 

Fisher, 1975; Kaufman and Rousseeuw, 1990; Milligan, 1980). In addition, although Ward’s 

method may perform well with non-Euclidean distance measures (Cao et al., 1997), this may not 

be entirely appropriate since Ward’s method calculates internal dendrogram distances with the 

Euclidean method (Peilou, 1984).  

Classification evaluators found TWINSPAN and k-means analysis solutions to be 

ineffective.  TWINSPAN may suffer from a number of problems present in its parent method, 
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correspondence analysis (CA), which performs poorly in finding patterns for multi-gradient 

datasets (McCune and Grace, 2002), and implicitly uses chi-squared distance, a measure which 

accords high weights to species with low total abundance (Faith et al., 1987).  It should be noted 

that Dale (1995) argued TWINSPAN should not be compared to other classification methods 

solely on the basis of clustering since its primary goal is characterization through indicator 

species, not creating a cluster structure.       

The poor performance of k-means analysis may be due to several factors.  The problems 

associated with Euclidean distance (the measure used by k-means analysis) and vegetation data 

were noted above, i.e. errors are introduced at higher distances, and there is no fixed upper bound 

for sample units that have nothing in common.  Dufrêne and Legendre (1997) used the Principal 

Coordinates Analysis (PCoA) species and site scores from an ordination of a Stienhaus similarity 

matrix instead of Euclidean distances to avoid this problem.  In addition, while random k-means 

starting points (our methodology) generally results in poor cluster recovery with synthetic 

datasets, much better recovery characteristics may be exhibited when using valid seed points, 

e.g. average linkage centroids (Milligan, 1980). Finally, for our datasets, the use of means may 

be disadvantageous to k-means analysis, since this statistic is often a poor indicator of centrality 

in ecological data (Kaufman and Rousseeuw, 1990).  The much better performance of PAM, a 

non-hierarchical method which addresses several of these deficiencies, is evident in Table 2.    

While my results indicate that flexible β = -0.25, average linkage, and Ward’s method are 

effective classification methods for vegetation data, they also indicate that methods can vary in 

efficacy with different ecological datasets.  Thus, our results support the idea that the “fit” 

between classification methods and data should be verified (using methods similar to those in 

this paper) preceding a definitive classification of data. 

3. Pruning analysis and Community summaries 

Although evaluators were often not in agreement over exact optima locations, most had 

peaks in generally the same area, indicating legitimate pruning regions.  Exceptions include 

ISAMIC and Morisita’s index whose linear artifact causes them to be poor choices for pruning 

analysis. Indeed, eliminating these evaluators resulted in plots of simple standardized responses 

and plots of residuals from standardized responses to be essentially identical for the pre-mine 

dataset (Fig. 8, Table 5).    

Pruning analysis indicated that the optimum number of clusters may be greater than the 

maximum number of clusters tested for the alpine dataset (i.e. > 21 clusters, Fig. 7a, 7b, Table 4).  

In contrast, several legitimate pruning solutions were indicated for the prairie dataset (Figs. 6, 8, 

Tables 3, 5).  The multiple optima suggest a hierarchical structure in the pre-mine dataset with 

divisions at around 4 and 10 clusters (Figs. 6c, 6d, 8, Tables 3, 5).   

The four clusters indicate general physiognomic types within the pre-mine landscape.  The 

clusters represent 1) grassland; 2) disturbed pastureland; 3) bottomland; and 4) skunkbush 

shrub/grassland.  These types are clearly shown with NMDS ordination scatterplots (Kruskal and 

Wish, 1978; Fig. 9).  Ordination is a mathematical approach to data that allows samples to be 

organized on a plot so that those samples which are most similar in terms of species composition 

and relative abundance will appear closer together, while those which have different species 

composition will be positioned further apart.  For more detail on ordination see Gauch (1982), 

Johnson and Wichern (1998), and/or McCune and Grace (2002). The species composition of the 

four physiognomic types can be demonstrated with relevé tables which summarize species 
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constancy and cover within the communities (Table 6).  The ten clusters represent subdivisions 

of the four cluster solution.  These clusters can also be well represented by ordination (Fig. 10), 

and relevé tabling (Table 7).   
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Figure 8.  Pruning analysis for flexible β = -0.25 classification of the prairie (pre-mine) dataset 

without ISAMIC and Morisista’s index of niche overlap.  (a) Standardized evaluator 

responses. (b) Average standardized evaluator responses. (c) Residuals from 

evaluator responses plotted against linear models. (d) Average residual responses.    

  

(a) (b) 

(c) (d) 
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Table 5. Summary of Fig. 8. B = ASW, C = C.index, D = Gamma, E = ISA.pval, F = 

ISA.sig.inds, H = PARTANA, I = PBC. 

 

 B C D E F H I Average 

Standardized evaluators (Figs. 8a and 8b) 

Max cluster 4 21 21 3 10 2 4 3 

Min cluster 17 6 2 2 2 6 2 2 

Residuals from stand. evals. (Figs. 8c and 8d) 

Max cluster 4 12 11 3 10 2 4 3 

Min cluster 17 6 2 2 2 6 2 2 
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Figure 9. Prairie (pre-mine) dataset 3-dimensional ordination solution.  Four cluster solution from classification analysis 
superimposed.  Ellipses are 95% confidence intervals around cluster centroids.

1 (grassland) 

4 (disturbed) 

3 (bottomland) 

2 (Rhus grassland) 
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2 (Rhus grassland) 
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Table 6. Summarized relevé table for the pre-mine dataset 4 cluster solution.  This table 

lists all species that occur with >30% constancy in at least one of the four types.  

Species occurrences with > 50% constancy are shaded.  Indicator species are 

bolded.  A two character cipher
1
 is included in each cell which indicates 

constancy (percentage of sites that contain the species), and cover respectively. 

 

 
Community 1 
(grassland) 

Community 2 
 (Rhus grassland) 

Community 3 
(bottomland) 

 Community 4 
(disturbed) 

Vulpia octoflora 4A +A ..  1A 

Artemisia dracunculus 4A ++ 1A  1A 

Bouteloua gracilis 8C 3A 3A  .. 

Carex filifolia 5D 4B 1B  .. 

Phlox hoodii 5A 6A ..  .. 

Lygodesmia juncea 3A +A 2A  1A 

Carex pensylvanica 2C 4B ..  .. 

Aster falcatus 2A 3A ..  .. 

Yucca glauca 1A 5B ..  .. 

Andropogon scoparius 1A 3B ..  .. 

Astragalus adsurgens 1A 3A ..  .. 

Bouteloua curtipendula +A 4C ..  .. 

Comandra umbellata +A 3A ..  .. 

Calamovilfa longifolia 3B 3A 2A  .. 

Artemisia cana 4B 3A 6C  .. 

Cerastium arvense 2A 3A 2A  .. 

Solidago missouriensis 2A 3A 1A  .. 

Echinacea angustifolia  2A 3A 1A  .. 

Artemisia ludoviciana 2A 2A 7A  .. 

Hedeoma hispidum 2A ++ 1A  .. 

Rhus trilobata 1B 9D 3C  .. 

Linum lewisii 1A 4A 1A  .. 

Agropyron spicatum 5C 9D 1A  1A 

Agropyron smithii 9D 7B 9D  5A 

Bromus japonicus 9D 7B 8C  5A 

Koeleria cristata 9D 7B 3B  5A 

Stipa comata 9D 6B 3B  1A 

Gutierrezia sarothrae 5C 6B 1A  5B 

Bromus tectorum 3B 2A 1A  1A 

Stipa viridula 5C 4A 6C  3A 

Tragopogon dubius 5A 4A 4A  1A 

Gaura coccinea 5A 3A 4A  1A 

Artemisia frigida 6B 3A 3A  5B 

Sphaeralcea coccinea 7A 3A 1A  5A 

Psoralea argophylla 5A 3A 1A  3A 

Poa pratensis 5C 2A 9E  3A 

Taraxacum officinale 5A 1A 6A  7A 

Poa secunda 6B 1A 2A  3A 

Plantago argyraea 7A 1A 1A  5A 

Achillea millefolium 3A 5A 9C  1A 

Melilotus officinalis 3B 2A 4C  5D 

Rosa arkansana 2A 3A 2A  1A 

Aristida purpurea 1A +A 1A  3A 

Lithospermum incisum 3A ++ ..  3A 

Aster campestris 1A 3A ..  1A 

Lactuca oblongifolia 1A ++ 3A  .. 

Symphoricarpos occidentalis +A 4B 8E  .. 

Rosa woodsii .. +A 6D  .. 

Androsace occidentalis 1A ++ ..  3A 

Agropyron cristatum 1A .. 1A  9E 

Alyssum alyssoides 1A .. ..  7C 

Vicia americana +A 1A ..  3B 

Convolvulus arvensis .. .. ..  3C 
 

1For each cell in the body of the table, constancy is indicated by the first symbol, while cover is indicated by the second symbol.  

For constancy: 0% = “.”, 0-10% = +, 10-20% = 1, 20-30% = 2, 30-40% = 3, 40-50% = 4, 50-60% = 5, 60-70% = 6, 70-80% = 7, 

80-90% 8, 90-100% = 9.  For cover: 0% = “.”, 0-0.01% = +, 0.01-1% = A, 1-2% = B, 2-5% = C, 5-25% = D, >25% = E.  
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Figure 10. Rosebud NMDS 3 dimensional solution.  Final stress = 13.76.  10 cluster solution from classification analysis 

superimposed.  1a = STCO-AGSM-BOGR-CAPE, 1b = STCO-AGSM-BOGR-ARFR, 1c STCO-AGSM-BOGR-CAFI, 

community 1d  = ARTR-STVI), 2a = RHTR-AGSP-CAFI, 2b = RHTR-AGSP, 2c = RHTR-AGSP-CAPE-FEID, 2d =  

RHTR-AGSP-BOCU-ANSC), 3 = AGSM-POPR-ROWO, 4 = AGCR.   Ellipses are 95% confidence intervals around 

cluster centroids.

4 

3 

1d 

1a 

1c 

1b 

2d 

2c 

2a
3 

2b 

3 
1a 

1b 
1c 

4 
1d 

2a 

2d 

2b 

2c 



 20 

Table 7. Summarized relevé for the pre-mine dataset 10 cluster solution.  This table lists all 

species that occur with >30% constancy in at least one of the ten types.  Species 

occurrences > 50% constancy are shaded.  Important indicator species are bolded.  

A two character cipher
1
 is included in each cell which indicates constancy and 

cover respectively.  
  Grassland   Rhus grassland  bottomland disturbed 

         

 

1a  
STCO-
AGSM- 
BOGR-
CAPE 

1b 
STCO-
AGSM- 
BOGR-
ARFR 

1c 
STCO-
AGSM- 
BOGR-
CAFI 

1d 
ARTR-
STVI 

2a 
RHTR-
AGSP- 
CAFI 

2b 
RHTR-
AGSP 

2c 
RHTR-
AGSP- 
CAPE-
FEID 

2d 
RHTR-
AGSP- 
BOCU-
ANSC 

3 
AGSM-
POPR- 
ROWO 

4 
AGCR 

Collomia linearis 3A +A .. .. .. .. .. .. .. .. 

Astragalus adsurgens 3A +A +A 4A 4B 2A 4A 3A .. .. 

Rosa arkansana 5C 2A 2A 1A 4A 3A 4A 2A 2A 1A 

Artemisia frigida 1A 8C 6B 6A 2A 3A 4A 2A 3A 5B 

Psoralea argophylla 5A 5A 6A 5A 2A 3A 4A 2A 1A 3A 

Gaura coccinea 7A 6A 5A 3A 5A 2A .. 4A 4A 1A 

Bouteloua gracilis 7A 8C 9D 6B 4A 6A .. 2A 3A .. 

Sphaeralcea coccinea 7A 8A 5A 7A 2A 6A 2A 4A 1A 5A 

Stipa comata 9D 9D 9D 6B 7C 4C 7A 7B 3B 1A 

Agropyron smithii 9D 9D 8D 9D 5B 9C 4A 8B 9D 5A 

Stipa viridula 3B 6C 2B 9D 7B 6A 4A 1A 6C 3A 

Koeleria cristata 9A 8D 9C 8D 9C 9C 2A 5A 3B 5A 

Gutierrezia sarothrae 1A 5B 5B 8C 8C 7A 2A 6B 1A 5B 

Artemisia cana 9D 6C 2A 2A 3A 4B 7B 1A 6C .. 

Bromus tectorum 5B 4C 3B 1A 2A 2A .. 2A 1A 1A 

Poa pratensis 9D 7D 3B 3A 1A 3A 2A 1A 9E 3A 

Bromus japonicus 9D 9D 9D 9D 6A 9C 4A 7A 8C 5A 

Achillea millefolium 5A 4A 2A 6B 6B 7A 9B 1A 9C 1A 

Tragopogon dubius 9A 4A 5A 7A 8A 3A 2A 1A 4A 1A 

Taraxacum officinale 3A 7A 3A 3A 3A 1A .. ++ 6A 7A 
Melilotus officinalis 3A 4B 2B 4A 3A 3A .. 1A 4C 5D 

Alyssum alyssoides .. 1A 2A 3A .. .. .. .. .. 7C 

Agropyron cristatum .. 1A 1A +C .. .. .. .. 1A 9E 

Lygodesmia juncea 5A 2A 4A ++ 1A .. .. ++ 2A 1A 

Artemisia dracunculus 7B 4A 5B +A .. 1A .. .. 1A 1A 

Vulpia octoflora 5A 4A 5A 2A .. 2A .. ++ .. 1A 

Astragalus gracilis 1A +A 4A 2A 1A .. .. +A .. 1A 

Plantago argyraea 3A 9A 8A 3A .. 4A .. +A 1A 5A 

Aristida purpurea 1A 1B 1A .. .. .. .. +A 1A 3A 

Erysimum asperum 3A 2A 3A 1A .. 1A .. 1A .. 1A 

Lithospermum incisum 3A 1A 5A 1A .. 1A .. .. .. 3A 

Androsace occidentalis 1A 3A ++ 1A .. 1A .. .. .. 3A 

Hedeoma hispidum 1A 4A 2A 2A .. 1A .. .. 1A .. 

Lactuca oblongifolia 3A 1A +A .. 1A .. .. .. 3A .. 

Solidago mollis 3A +A 1A .. .. .. .. ++ 1A .. 

Artemisia tridentata .. +A +A 8D 2A 1A .. +A .. .. 

Calamovilfa longifolia 5C 1A 5C .. 2A 2A 4A 4A 2A .. 

Calamagrostis montanensis 3B 1A 4A ++ 5A 1A 2A .. .. .. 

Carex pensylvanica 9E 1A 4C .. 3B 3C 9D 3A .. .. 

Dalea purpurea 1A ++ +A +A 2A 3A .. ++ .. .. 

Agropyron spicatum .. 2B 6C 8D 9D 9D 9C 9D 1A 1A 

Cerastium arvense 3B 1A 2A 2A 5A 2A 9A 1A 2A .. 

Artemisia ludoviciana 5C 3A 1A .. 3A 3A 7A .. 7A .. 

Rhus trilobata 3C 1A 1B .. 8C 9D 9B 9C 3C .. 

Solidago missouriensis 1A 1A 3A .. 5A 1A 9A 1A 1A .. 

Bouteloua curtipendula .. +A +A .. 3B 2B 4A 8D .. .. 

Yucca glauca .. 1A 2B +A 6C 3A 2A 6A .. .. 

Aster falcatus .. 2A 2A 1A 6A 3A 2A ++ .. .. 

Phlox hoodii .. 6A 4A 8B 8A 8A 4A 2A .. .. 

Antennaria parvifolia .. 1A 1A ++ 3A 2A 2A ++ .. .. 

Andropogon scorapius .. .. 3B .. 3A 2A .. 6C .. .. 

Liatris punctata .. +A 3A +A 3A .. .. 3A .. .. 

Carex filifolia .. 2B 9D 4B 9C 4B .. 1A 1B .. 

Linum lewisii .. 1A +A 4A 5A 6A 4A 2A 1A .. 

Comandra umbellata .. +A ++ 1A 3A 4A 2A 1A .. .. 

Echinacea angustifolia .. 1A 1A 4A 4A 3A 2A 4A 1A .. 

Poa secunda .. 6C 7A 6A 2A 2A .. +A 2A 3A 

Aster campestris .. 1A 1A 2A 4A 3A 2A 2A .. 1A 

Vicia americana .. ++ +A 3A 1A 3A 2A +A .. 3B 

Symphoricarpos occidentalis .. +A +A .. 4A 3B 9C 2A 8E .. 

Prunus virginiana .. +A .. .. 3A 2A .. +A 2C .. 

Crepis acuminata 1A .. +A 1A 4A 1A .. .. .. .. 

Muhlenbergia cuspidata .. +A 1A .. 2A 4B .. +A .. .. 

Oxytropis sericea .. .. +A .. 1A .. 4A .. .. .. 

Campanula rotundifolia .. .. +A .. 2A .. 4A ++ .. .. 

Penstemon nitidus .. .. ++ 2A 3A .. 2A +A .. .. 
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        Table 7. cont. 

 
  Grassland   Rhus grassland  bottomland disturbed 

         

 

1a  
STCO-
AGSM- 
BOGR-
CAPE 

1b 
STCO-
AGSM- 
BOGR-
ARFR 

1c 
STCO-
AGSM- 
BOGR-
CAFI 

1d 
ARTR-
STVI 

2a 
RHTR-
AGSP- 
CAFI 

2b 
RHTR-
AGSP 

2c 
RHTR-
AGSP- 
CAPE-
FEID 

2d 
RHTR-
AGSP- 
BOCU-
ANSC 

3 
AGSM-
POPR- 
ROWO 

4 
AGCR 

Festuca idahoensis .. .. .. ++ .. .. 7D .. .. .. 

Pinus ponderosa .. .. .. .. 1A .. 4A 2A .. .. 

Amelanchier alnifolia .. .. .. .. 2A 1A 4A .. .. .. 

Solidago nemoralis .. .. .. .. 2A 1A 4A .. .. .. 

Phlox alyssifolia .. .. .. .. 3A 1A .. .. .. .. 

Juniperus scopulorum .. .. .. .. 1A 3C .. +A .. .. 

Chrysothamnus nauseosus .. .. .. .. .. 3A .. +A .. .. 

Rosa woodsii .. .. .. .. .. 1B .. .. 6D .. 

Convolvulus arvensis .. .. .. .. .. .. .. .. .. 3C 

 
1For each cell in the body of the table, constancy is indicated by the first symbol, while cover is indicated by the second symbol.  For 

constancy: 0% = “.”, 0-10% = +, 10-20% = 1, 20-30% = 2, 30-40% = 3, 40-50% = 4, 50-60% = 5, 60-70% = 6, 70-80% = 7, 80-90% 8, 90-

100% = 9.  For cover: 0% = “.”, 0-0.01% = +, 0.01-1% = A, 1-2% = B, 2-5% = C, 5-25% = D, >25% = E.   

 

Conclusions 

In this report I summarize the three steps that must be followed for effective cluster analysis.   

1. An effective distance measure was found.  Bray-Curtis and Jaccard’s distance were effective 

dissimilarity/distance measures for the vegetation dataset tested, while Manahattan, and 

Euclidean distance performed poorly.  In accordance with these results, Bray-Curtis dissimilarity 

was used whenever possible to create classifications used for analyses in steps 2 and 3 below. 

2. Effective classification methods were identified.   Three hierarchical agglomerative methods: 

flexible β = -0.25, average linkage, and Ward’s method were the most effective classification 

methods for datasets tested.  In response to this flexible β = -0.25 classifications were used for 

the final cluster analysis step: pruning analysis. 

3. Optimal cluster numbers (pruning optima) were determined.  While the optimum number of 

clusters appeared to be greater than the maximum number of clusters tested for the alpine 

dataset, legitimate pruning solutions were found for the prairie dataset.  The multiple optima 

suggest a hierarchical structure with ten clusters nested within four general physiognomic types. 

It is inevitable that land managers who require vegetation community analyses that are 

objective and reproducible will eventually turn to multivariate cluster analyses for recognition of 

vegetation patterns.  If used thoughtfully in conjunction with comprehensive and accurate field 

data, such analyses may provide quantitative middle ground between regulators and the mine 

industry for agreement on mine reclamation guidelines.  Thus cluster analysis may provide 

legitimate criteria for bond release in mining land reclamation.     
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