PROBLEMS IN ACIDITY AND ALKALINITY MEASUREMENTS IN MINE DRAINAGE¹

Carl S. Kirby²

Additional Keywords: theoretical, measured, standard methods, treatment, net alkalinity

Extended Abstract Introduction and Methods

Not all mine drainage is acidic, and problems in the interpretations of alkalinity and acidity measurements arise especially in mine drainage containing alkalinity. Synthetic and field samples of mine drainage were analyzed using seven titration methods, and the results were compared to theoretical definitions and calculated concentrations of alkalinity and acidity.

Synthetic mine drainage solutions were prepared with known concentrations of Fe(II), Fe(III), \pm Al, \pm Mn, \pm HCO₃⁻, \pm CO₂, \pm N₂ (to drive off O₂). Field samples with with varying concentrations of metals, HCO₃⁻, and pH values were collected. Samples were titrated by three alkalinity methods (Standard Methods [APHA, 1992]; H₂O₂ addition; H₂O₂ addition + one week storage) and four acidity methods (Standard Methods [APHA, 1992]; H₂O₂ addition; H₂O₂ addition; H₂O₂ addition + one week storage; N₂-purge + H₂O₂ addition). Samples were analyzed for metal concentrations using inductively coupled plasma spectroscopy and colorimetry.

Calculated acidity was determined using

Acidity_{calc} =
$$50[(2Fe^{2+}/56) + (3Fe^{3+}/56) + (3Al/27) + 2Mn/55 + 1000(10^{-pH})]$$
 (1)

from Hedin *et al.* (1994), where metal concentrations are in mg L^{-1} and acidity is in mg CaCO₃ L^{-1} . Acidity was also calculated from PHREEQC (Parkhurst, 1995) speciation.

Results and Discussion

¹Paper was presented at the 2002 National Meeting of the American Society of Mining and Reclamation, Lexington KY, June 9-13, 2002. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502.

²Carl S. Kirby, Associate Professor and Chair, Department of Geology, Bucknell University, Lewisburg PA 17837

Figures 1-3 show titration results. Samples with pH < 4.5 gave consistent results for all titration methods, causing no problem in the interpretation of the acidity in such samples. In synthetic samples containing alkalinity, standard methods for alkalinity returned the same values as calculated alkalinity before metal oxidation and hydrolysis are allowed. Following metal oxidation and hydrolysis, calculated alkalinity can be negative, but measured alkalinity is constrained be greater than or equal to zero.

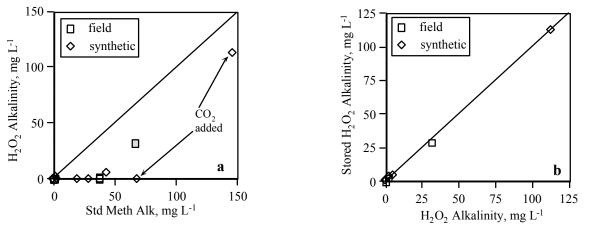


Figure 1. Comparisons of measured alkalinity methods. All alkalinities are reported in mg L^{-1} as CaCO₃. The diagonal line shows where values on the x- and y-axes are equal.

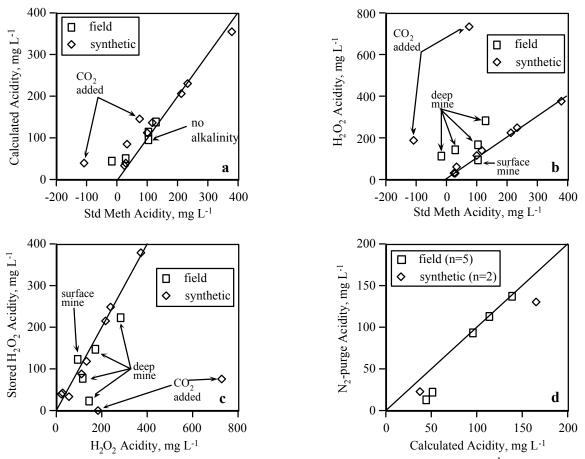


Figure 2. Comparisons of acidity methods. All acidities are reported in mg L^{-1} as CaCO₃. The diagonal line shows where values on the x- and y-axes are equal.

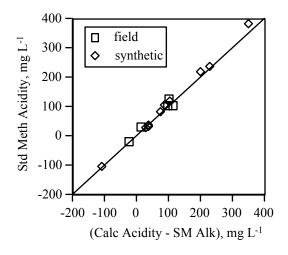


Figure 3. Standard Method acidity *versus* net acidity (calculated acidity [Eqn. 1] minus Standard Method alkalinity). All values are reported in mg L^{-1} as CaCO₃. The diagonal line shows where values on the x- and y-axes are equal.

Samples containing both alkalinity and acidity present serious problems in the interpretation of laboratory results and comparison to theoretical values. Measured acidity values varied significantly among titration methods. Standard acidity titration methods intentionally cause the hydrolysis of iron, which allows H^+ to react with alkalinity present in the sample. PHREEQC modeling of synthetic samples supports this conclusion. Standard methods also can return negative values for acidity, but some laboratories report negative values as zero. Standard method acidity results (*if negative values are reported*) are consistent with the most rigorously defined theoretical calculated acidity (if CO₂ is excluded).

Using "net alkalinity" (measured alkalinity – measured acidity) to design mine drainage treatment can lead to ineffective systems with insufficient alkalinity to neutralize metal and H^+ acidity. The use of (measured alkalinity – calculated acidity) is recommended in the planning of mine drainage treatment.

Literature Cited

- American Public Health Association (APHA). 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Assoc., Washington, DC.
- Hedin, R. S., R.W. Nairn and R.L.P. Kleinmann. 1994. Passive Treatment of Coal Mine Drainage, US Bur. Mines Info. Circ. No. 9389, US Dept. Interior: Washington, DC.
- Parkhurst, D. L. 1995. User's Guide to PHREEQC A Computer Program for Speciation, Reaction Path, Advective-transport, and Inverse Geochemical Calculations, Water. Resour. Invest. Rep. No.95-4227, US Geol. Survey, Lakewood CO.

PROBLEMS IN ACIDITY AND ALKALINITY MEASUREMENTS IN MINE DRAINAGE

Carl S. Kirby

Associate Professor and Chair, Department of Geology, Bucknell University, Lewisburg PA 17837

Presented at American Society for Mining & Reclamation Conference, Lexington, KY

June 9-13, 2002

ABSTRACT

Not all mine drainage is acidic, and problems in the interpretations of alkalinity and acidity measurements arise especially in mine drainage containing alkalinity. Synthetic and field samples of mine drainage were analyzed using seven titration methods, and the results were compared to theoretical definitions and calculated concentrations of alkalinity and acidity.

Samples with pH < 4.5 gave consistent results for all titration methods, causing no problem in the interpretation of the acidity in such samples. In synthetic samples containing alkalinity, standard methods for alkalinity returned the same values as calculated alkalinity before metal oxidation and hydrolysis are allowed. Following metal oxidation and hydrolysis, calculated alkalinity can be negative, but measured alkalinity is constrained be greater than or equal to zero.

Samples containing both alkalinity and acidity present serious problems in the interpretation of laboratory results and comparison to theoretical values. Measured acidity values varied significantly among titration methods. Standard acidity titration methods intentionally cause the hydrolysis of iron, which allows H⁺ to react with alkalinity present in the sample. PHREEQC modeling of synthetic samples supports this conclusion. Standard methods also can return negative values for acidity, but some laboratories report negative values as zero. Standard method acidity results (*if negative values are reported*) are consistent with the most rigorously defined theoretical calculated acidity (if CO_2 is excluded).

Using "net alkalinity" (measured alkalinity – measured acidity) to design mine drainage treatment can lead to ineffective systems with insufficient alkalinity to neutralize metal and H^+ acidity. The use of (measured alkalinity – calculated acidity) is recommended in the planning of mine drainage treatment.

Mine drainage and other waters can have both alkalinity <u>and</u> acidity not mutually exclusive

Acidity sources in mine drainage:

- Metal acidity: $Fe^{3+} + H_2O = FeOH^{2+} + H^+$
- H⁺ acidity: "free" H⁺ in solution
- CO_2 acidity: $CO_2 + H_2O = H_2CO_3$

Alkalinity sources in mine drainage:

- Carbonates: $CaCO_3 + H_2CO_3 = Ca^{2+} + 2HCO_3^{-1}$
- Sulfate reduction: $2CH_2O + SO_4^{2-} = H_2S + 2HCO_3^{--}$

What we hope to show:

Acidity is underestimated by standard method titrations because alkalinity present in samples reacts with acidity before or during titration

 $Fe^{3+} + H_2O = FeOH^{2+} + H^+$ $H^+ + HCO_3^- = H_2CO_3$

$$Fe^{3+} + H_2O + HCO_3 = FeOH^{2+} + H_2O_3$$

Alk from sample consumed in Acidity titration, but counted in Alk titration

Acidity driven off 1074 as CO₂ in Std Method, not counted

Why is this important?

• Design of treatment systems using standard methods for alkalinity and acidity can result in inadequate treatment of AMD

- Example Fe(II) Alk_{meas} Acidity_{meas} Acidity_{calc} Net Alk Net Alk Use meas acidity Use calc acidity 20 66 -18 (or 0) 44 84 (or 66) 22
 - pH of this sample drops to 4.5 with aeration
 - Lab result suggests (incorrectly) that no base is needed for treatment

OBJECTIVES

- Examine theory and practice of alkalinity and acidity measurements
- Examine calculation and use of "net alkalinity"

HYPOTHESES

• Standard Method (APHA) and EPA acidity measurements underestimate metal acidity in samples containing alkalinity

- Net Alkalinity = (alk-acidity) based on above is not correctly interpreted
- Should use (alk_{measured} acidity_{calculated}) = net alkalinity

Derivation of definition	Source	Definition	Negative values?	Comments		
	Source	Theoretical Alkalinity		Commonia		
Charge balance (electroneutrality)	Drever, 1997	Sum (conservative cations) - sum (conservative anions) = $[HCO_3^-]$ + 2 $[CO_3^{-2}]$ + $[OH^-]$ - $[H^+]$	yes	Primarily H ₂ O-CO ₂ , can be extended to other species		
Charge balance	Geotechnical Services, 1982	$\begin{array}{l} [HCO_{3}^{-}] - ([H^{+}] + [HSO_{4}^{-}] + \ 3[Al^{3+}] + 2[AlOH^{2+}] + [Al(OH)_{2}^{+}] + \\ 3[Fe^{3+}] + 2[FeOH^{2+}] + [Fe(OH)_{2}^{+}] + 2[Fe^{2+}] + [FeOH^{+}]) \end{array}$	yes	Reference conditions differ from definition immediately below		
Proton condition (charge and mass balance)	Parkhurst, 1995	PHREEQC definition; similar to above; but metals are assigned different alkalinities than above based on reference conditions, e.g., $Fe^{2+} = 0$, $Fe^{3+} = -2$	yes	Consistent with Morel and Hering, 1993; Stumm and Morgan, 1996		
		Laboratory Alkalinity				
Titration	Stumm and Morgan, 1996	"equivalent sum of the bases that are titratable with strong acid"; does not include H+ or some other negative contributions to alkalinity	no	Does not measure negative alkalinity; endpoints should be adjusted for total carbon		
		Theoretical Acidity				
Practical; based on charge balance	Hedin et al., 1994	$50[(2Fe^{2+}/56) + (3Fe^{3+}/56) + (3Al/27) + 2Mn/55 + 1000(10^{-pH})];$ metals in mg L ⁻¹	no	Suggested for pH < 4.5		
Proton condition	Stumm and Morgan, 1996	Mineral acidity = $[H-Acy] = [H^+]$ - $[HCO_3^-] - 2[CO_3^{-2-}] - [OH^-]$	yes	Primarily H ₂ O-CO ₂ ; consistent with many texts		
Proton condition	Stumm and Morgan, 1996	CO_2 -acidity = $[CO_2$ -Acy] = $[H_2CO_3^*] + [H^+]$ - $[CO_3^{2^-}] - [OH^-]$	yes	Primarily H ₂ O-CO ₂ ; consistent with many texts		
Practical; based on charge balance	Langmuir, 1997	Example total acidity for acid mine drainage: $[H^+] + [HSO_4^-] + 2[Fe^{2+}] + 3[Fe^{3+}] + 2[FeOH^{2+}] + 3[Al^{3+}]$	no	Not for mine drainage with significant positive alkalinity		
Practical; based on charge balance	Drever, 1997	Example acidity for Al-rich water: $[H^+] - [HCO_3^-] + 3[Al^{3+}] + 2[AlOH^{2+}] + [A(IOH)_2^+] - [Al(OH)_4^+]$	yes	Ignores $CO_3^{2^2}$ and OH^r ; can be modified for Fe species		
		Laboratory Acidity				
Titration	Stumm and Morgan, 1996	"equivalent sum of the acids that are titratable with strong base"; standard titration methods	Yes, if lab reports negative values	Excludes acidity due to CO_2 ; allows HCO_3^- consumption		

Table 1. Summary of alkalinity and acidity definitions. Print out or choose "Slide Show" for better viewing.

Note that theoretical alkalinity values can have negative values due to [H+], but lab alkalinities cannot have negative values.

Note that lab acidity values can be negative, but many labs (*e.g.*, PA DEP; Wilson, pers. comm.) do not report negative values.

METHODS

- Nature of samples
 - 10 Synthetic AMD samples ± Fe, ± Al, ± Mn
 - pH ~ 3, oxic
 - pH~ 6.3, anoxic
 - pH~ 7, anoxic
 - pH 5 & 6, anoxic with CO₂
 - 5 Field AMD samples
 - pH~ 3, oxic
 - pH~ 4.5-6, anoxic with CO₂
 - pH[~] 7, anoxic with CO₂

METHODS, cont.

Alkalinity Titrations

- Alk1: Std. Method
 - titrate with H₂SO₄ to pH 4.5
- Alk2: H₂O₂
 - add H₂O₂ to oxidize metals
 - titrate with H₂SO₄ to pH 4.5
- Alk3: stored H₂O₂
 - add H₂O₂ to oxidize metals
 - store 1 week open to atmosphere
 - titrate with H₂SO₄ to pH 4.5

Acidity Titrations

- Acid1: Std. Method
 - if pH = 4.5, add H_2SO_4 to pH 4
 - add H₂O₂ to oxidize metals
 - boil 2-5 minutes, allow to cool
 - titrate with NaOH to pH 8.3
- Acid2: H₂O₂
 - add H₂O₂ to oxidize metals
 - titrate with NaOH to pH 8.3
- Acid3: stored H₂O₂
 - add H₂O₂ to oxidize metals
 - store 1 week open to atmosphere
 - titrate with NaOH to pH 8.3
- Acid4: N₂-purge, H₂O₂
 - bubble N₂ to displace CO₂
 - add H₂O₂ to oxidize metals
 - titrate with NaOH to pH 8.3

METHODS, cont.

PHREEQC modeling

• The geochemical computer code PHREEQC (Parkhurst, 1995) was used to model selected synthetic mine waters which were initially anoxic and contained alkalinity. Charge balance was maintained by adjusting SO₄²⁻ concentrations.

• The first step in modeling was to calculate equilibrium concentrations for the anoxic, CO₂-free solution based on measured metal concentrations (all iron and manganese were assumed to be Fe(II) and Mn(II), respectively) and pH.

• For sample SYN7, the P_{CO2} was estimated by running the model iteratively until the measured pH was reproduced.

• In step 2 or 3, the addition of H_2O_2 was modeled by allowing the solution to equilibrate with atmospheric O_2 . In steps 3 or 4, the solution was allowed to equilibrate with respect to amorphous $Fe(OH)_3$ or crystalline MnO_2 solids.

• The modeling was designed to simulate reactions that occur due to the addition of H_2O_2 and degassing of CO_2 during titrations; it does not simulate the addition of acid or base during titrations.

Std. Method Acidity (Acid1 method) can be <u>negative</u>: <u>SM acidity = (eq base/L) - (eq acid/L)</u> <u>volume of sample</u>

but labs often report a negative value as zero.

Calculated acidity, mg/L as CaCO₃ = 50 (3 Fe(III)/56 + 2 Fe(II)/56 + 3 Al/27 + 2 Mn(II)/55 + 1000(10^{-pH}))

may be extended to include species such as H₂CO₃, FeOH²⁺ and others

		C	oncentra	tion, mg	Calc. acidity,							
#	pН	Fe(II)	Fe(III)	Fe(III) Al Mn(II) mg/L as CaCO3		gasses						
1	2.8	0	56	0	0	231	oxic					
2	3.0	0	0	54	0	353	oxic					
3	6.1	117	0	0	0	210	anoxic					
4	6.0	91	0	0	0	163	anoxic					
5	7.2	40	0	0	20	107	anoxic					
6	6.6	0	0	0	19	34	anoxic					
7	7.0	0	0	0	0	33	anoxic, add CO_2					
8	5.5	85	0	0	0	152	anoxic, add CO_2					
9	6.7	85	0	0	0 151		anoxic					
10	4.1	0	0	0	18	38	anoxic					

Table 2. Synthetic AMD compositions

Table 3. Field AMD compositions

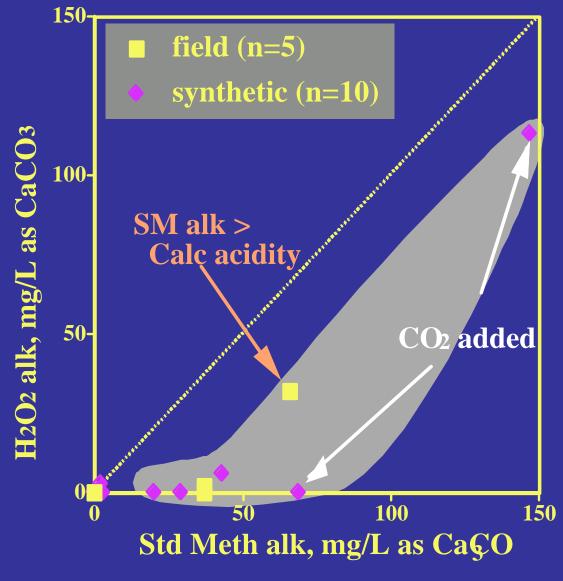
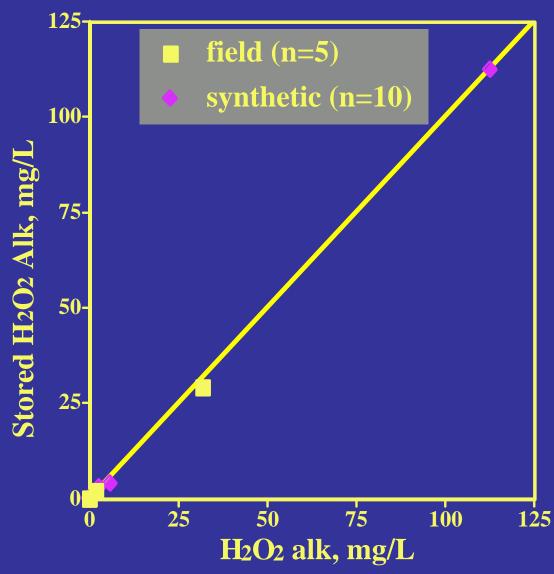

		C	oncentra	tion, mg	Calc. acidity,	DO, mg/L	
Site #	pН	Fe(II) Fe(III)		Al	Mn(II)	mg/L as CaCO3	
8	3.6	0.4	0.6	17	2	114	9
23	3.4	7.2	3.3	7.6	6.9	96	< 0.3
51	5.4	67	2.7	0.06	6.6	139	< 0.3
20	5.7	23	1.4	0.04	3.5	51	0.9
49	5.9	19	1.2	0.03	3.0	44	< 0.3

Table 4. Field & Synthetic AMD titration results - all in mg/L as CaCO₃

Sample	SM	H_2O_2	Stored	SM	H ₂ O ₂	Stored	N ₂ -purge	
	alk	alk	H ₂ O ₂ alk	acidity	acidity	acidity	acidity	
Site 8	0	0	0	105	95	125	113	
Site 23	0	0	0	105	172	149	94	
Site 51	37	0	0	128	283	223	138	Have
Site 20	37	2	2	30	144	25	23	Alk
Site 49	66	32	29	-18	116	78	13	
SYN1	0	0	0	235	nd	249	nd	
SYN2	0	0	0	382	nd	379	nd	
SYN3	3	0	0	217	225	214	nd	
SYN4	20	0	0	103	118	87	nd	
SYN5	43	6	4	36	61	34	nd	Have
SYN6	2	3	3	27	32	38	nd	
SYN7	147	113	112	-104	190	0	22	Alk
SYN8	69	0	0	79	737	75	130	
SYN9	29	0	0	118	140	119	nd	
SYN10	0	0	0	33	34	41	nd	

Note negative values for acidity, which would usually not be reported; such negative values only occur in samples containing alkalinity.

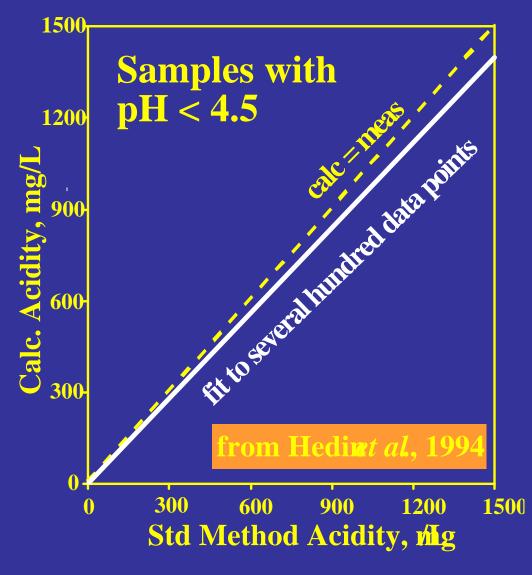
Figure 1. Comparing Alkalinity Methods



Samples in shaded area all have alkalinity which neutralizes acidity

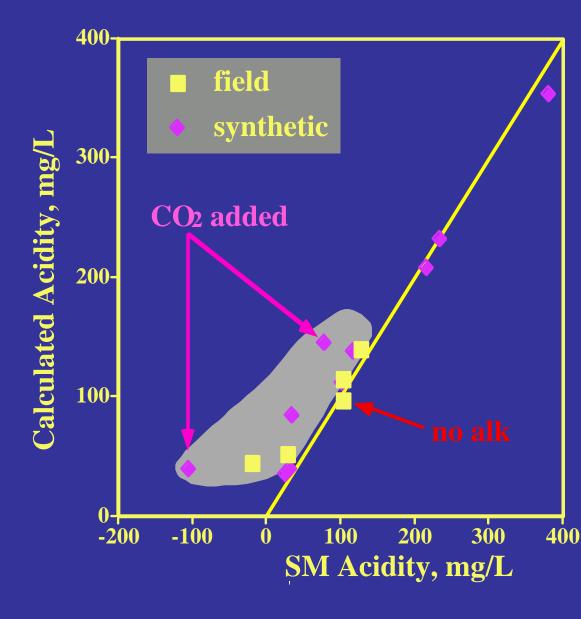
Addition of H₂O₂ mimics oxidatioin during sample storage; results show that storage can lower measured alkalinity

Diagonal line shows where x-axis1083 value = y-axis value.


Figure 2. Comparing Alkalinity Methods

Stored H_2O_2 alkalinity returns same value as non-stored H_2O_2 alkalinity; suggests that oxidation of metals is rapid upon H_2O_2 addition

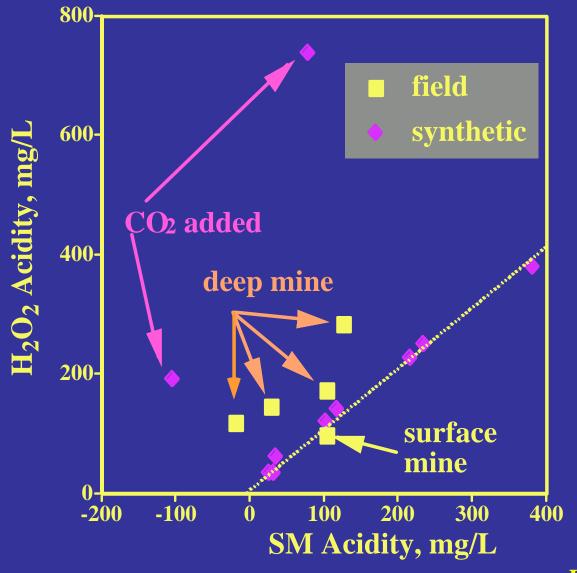
Diagonal line shows where x-axis1084 value = y-axis value.


Figure 3. Calculated vs Std Method Acidity for low-pH samples

Only small discrepancies between Std Method Acidity and calculated acidity for low-pH samples

Diagonal yellow line shows where 085 x-axis value = y-axis value.

Figure 4. Calculated vs Std Method Acidity

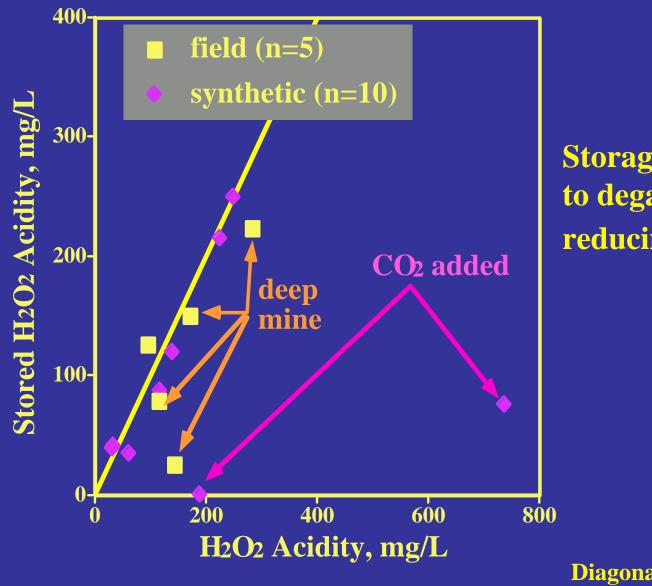

Shaded samples have Calc > SM acidity due to alkalinity that neutralizes acidity during titration

Standard Method can underestimate acidity in samples containing acidity

Degassing of CO_2 can explain discrepancies for some, but not all samples

Diagonal line shows where x-axis1086 value = y-axis value.

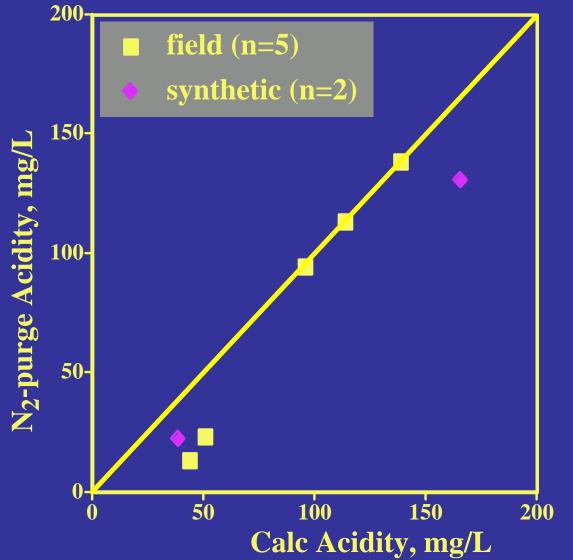
Figure 5. H₂O₂ vs Std Method Acidity



Non-stored H₂O₂ method "counts" acidity due to CO2

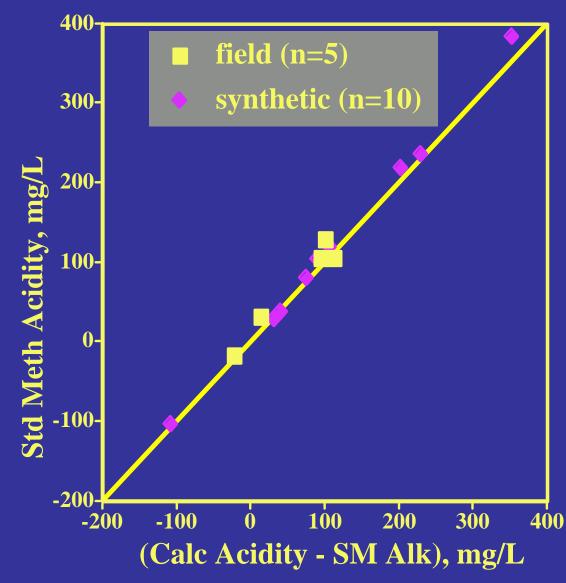
Std Meth intentionally does not measure acidity due to CO₂

Diagonal line shows where x-axis1087 value = y-axis value.


Figure 6. Stored H₂O₂ Acidity vs H₂O₂ Acidity

Storage allows CO₂ to degas, reducing acidity

Diagonal line shows where x-axis1088 **value = y-axis value.**


Figure 7. N₂-purge vs Calculated Acidity

N₂-purge
1) causes pH increase
2) removes CO₂
3) underestimates

acidity in samples
containing alkalinity

Figure 8. Std Method Acidity vs Net Acidity

Std Method Acidity is actually a measure of "net acidity", which can have a negative value

- CO₂ ignored
- Alkalinity in sample allowed to consume some acidity

Comparison of alkalinity methods to PHREEQC simulations - print out for better viewing

Table 5 shows results of PHREEQC simulations carried out for three synthetic samples and compares the simulation results to measured alkalinity and pH. These examples serve to illustrate the expected changes in solution composition prior to titration, *i.e.*, upon CO₂ degassing, oxidation (saturation with O₂), metal hydrolysis, and precipitation of iron or manganese (solution is allowed to reach saturation with amorphous Fe(OH)₃ or pyrolusite, MnO₂). These calculations do not include simulated addition of NaOH to the solutions. SYN 3 contained iron as the only metal, and it had low alkalinity. SYN 5 contained iron and manganese and had significant alkalinity. SYN7 contained iron, had significant alkalinity, and also had CO₂ introduced in stage 2. The measured pH values for stages 1 or 2 were recorded before titrations began. The measured pH values for stages 3 or 4 were recorded after addition of H₂O₂ and metal oxidation/precipitation, but before any addition of NaOH.

In a physical experiment, oxidation will unavoidably be accompanied by precipitation. The simulation results in Table 5 show that the pH decreases upon oxidation alone. This decrease results from the combined effects of oxidation

$$Fe^{2+} + 0.25 O_2 + H^+ = Fe^{3+} + 0.5 H_2O_2$$
, (A)

which raises pH, and hydrolysis in reactions such as

$$Fe^{3+} + 2 H_2O = Fe(OH)_2^+ + 2 H^+,$$
 (B)

which lowers pH. Prior to oxidation in the simulations, the predominant aqueous iron species was Fe^{2+} . Following oxidation, $Fe(OH)_2^+$ and $FeOH^{2+}$ were the predominant aqueous iron species. Bicarbonate alkalinity also decreases.

Following oxidation, iron is allowed to precipitate in the simulation, which further lowers pH as in the following reaction

 $Fe(OH)_{2}^{+} + H_{2}O = Fe(OH)_{3} + H^{+}$.

Two calculated alkalinities are given in Table 5 as follows. The first alkalinity value, calculated by PHREEQC, assigns negative values to H⁺, HSO₄⁻, and some metal species; these assignments are based on reference conditions for pH 4.5 (Parkhurst, 1995). For example, Fe³⁺ is assigned an alkalinity of -1 eq kg⁻¹, whereas Fe²⁺ is assigned an alkalinity of zero. The second value is calculated based on the PHREEQC speciation, but does not assign alkalinities to metal species. In contrast to the measured values, negative values for alkalinity can and do result from the simulations because both calculations include negative terms. For example, when H⁺ exceeds HCO₃⁻ and other positive terms, the calculated alkalinity is negative.

Both of the calculated acidities are based upon the PHREEQC speciation, and both include negative contributions for species such as OH^- , HCO_3^- , and their complexes. The first calculated acidity includes a positive contribution of CO_2 (1 eq kg⁻¹) to acidity; the second calculated acidity ignores acidity due to CO_2 .

continued next page 1091

(C)

Table 5. PHREEQC results for SYN3, SYN5, and SYN7 compared to measured values. Calculated values are from PHREEQC simulations. Print out or choose "Slide Show" for better viewing.

Stage of				Alkalinity, mg L ⁻¹ as CaCO ₃			Acidity, mg L ⁻¹ as CaCO ₃				Calculated	
sample	titration	meas. pH	calc. pH	meas	calc. ¹ w/ metals	calc. ² , no metals	Std Meth	H_2O_2	calc. ³ , w/CO ₂	calc. ⁴ , no CO ₂	Fe(II), mg L ⁻¹	Fe(III), mg L ⁻¹
	1) anoxic	6.13	6.13	3	3	3			209	204	116	0
SYN3	2) oxidize	nd	3.72	nd	-101	-14			211	204	0	116
	3) Fe precip.	3.07	3.19	0	-141	-45	217	225	211	204	0	70
	1) anoxic	7.15	7.15	41	43	41			47	41	27	0
SYN5	2) oxidize	nd	6.02	nd	19	16			73	41	0	27
	3) Fe precip.	5.24	4.18	6	-4	-4			89	41	0	1
	4) Mn precip.	5.24	3.23	6	-40	-39	36	61	83	34	0	1
	1) anoxic, no CO ₂	6.80	6.80	nd	145	142			82	36	22	0
SYN7	2) anoxic, $P_{CO2} = 0.092$	6.10	6.10	147	145	142			132	-103	22	0
	3) oxidize, $P_{CO2} = 0.092$	nd	6.00	nd	126	124			150	-106	0	22
	4) Fe precip. , $P_{CO2} = 0.092$	5.93	5.91	113	106	106	-104	190	167	-106	0	0

¹Includes contribution by metal species ²No contribution by metal species ³Includes CO₂ contribution ⁴No CO₂ contribution

Note the significant discrepancies between measured and calculated alkalinities and between measured and calculated acidities. The consumption of HCO_3^- by acidity occurs <u>before</u> titrants are added.

continued from previous page Comparison of alkalinity methods to PHREEQC simulations - print out for better viewing

The measured and calculated pH values for SYN3 and SYN 7 correspond well. The measured pH values for SYN5 were higher than calculated values; the simulation overestimates the pH decrease due to metal precipitation for this sample. The main point of this exercise is to model the decrease in acidity upon oxidation and metal hydrolysis/precipitation in samples that contain alkalinity, even before the addition of base in a titration begins. Both measured (H_2O_2) and calculated alkalinities decrease during these processes in an acidity titration, but the standard methods for measuring alkalinity do not allow metal oxidation/hydrolysis. Therefore, standard method alkalinity titrations reflect the total amount of positive alkalinity in a sample, but standard method acidity titrations underestimate the positive acidity due to metals in samples which contain alkalinity. Alternatively, one could argue that the Standard Method acidity titration returns a value consistent with theoretical definitions of acidity that include both positive and negative contributions to acidity and allow for negative acidity values.

The effect of CO_2 ingassing/degassing can be seen in the SYN5 and SYN7 results in Table 5. SYN7 is initially pH 6.8 before CO_2 addition, and the pH drops to 6.1 following CO_2 addition. Alkalinity is unaffected. The calculated acidity including CO_2 increases primarily due to the increasing $H_2CO_3^*$ and H^+ concentration as pH drops. In contrast, the calculated acidity excluding CO_2 decreases to negative values. The Standard Method acidity titration for SYN7 drives off CO_2 , so this acidity is negative, whereas the H_2O_2 titration, which retains CO_2 , remains positive and increases. The H_2O_2 acidity titration retains CO_2 , so this acidity is positive. A similar pattern is observed in the SYN5 results.

Summary:

PHREEQC simulations confirm that

1) Acidity decreases upon oxidation & metal hydrolysis/precipitation in samples containing alkalinity

2) CO₂ degassing reduces acidity, but not alkalinity

3) Std Method alkalinity titrations reflect the total amount of positive alkalinity, but do not measure negative alkalinity

4) Std Method acidity titrations underestimate the positive acidity due to metals in samples which contain alkalinity

5) Std Method acidity titration returns a value consistent with theoretical definitions of acidity that include both positive and negative contributions to acidity and allow for negative acidity values

Buffer capacity

The buffer capacity is a measure of the resistance of a water or a water-rock system to changes in pH. To illustrate the impact of various aqueous species, buffer capacities (β) for H₂O, and CO₂ were calculated exactly as in Langmuir (1997), and $\beta_{Fe(III)}$ and $\beta_{Al(III)}$ were calculated after Langmuir using the equation

$$\boldsymbol{b}_{Me} = 2.3 \left| \frac{K_1 C_{Me} [H^+]}{\left(K_1 + [H^+] \right)^2} + \frac{K_2 C_{Me} [H^+]}{\left(K_2 + [H^+] \right)^2} + \frac{K_3 C_{Me} [H^+]}{\left(K_3 + [H^+] \right)^2} \right|$$

where K's are the first three stepwise association constants and [Me] is the total dissolved Fe(III) or Al(III) concentration. Because the association constants for $AlOH^{2+}$ and $Al(OH)_{2^{+}}$ are similar in value, this approximation introduces some error into the calculation. However, the calculated buffer capacities serve to illustrate the general ability of a water to resist changes in pH due to acid or base addition. Changing CO_2 or metal concentrations would also change the buffer capacities.

Figure 9 shows the individual and total buffer capacities due to water alone, water containing 10^{-3} mol L⁻¹ CO₂, and water with 25 mg L⁻¹ Fe and Al. Below pH 4, most of the total buffer capacity is due to water alone. Above pH to 4 to the pH 8.3 titration endpoint, the total buffer capacity is due to a combination of CO₂ and metals. Two of the main goals for mine drainage treatment are to remove metals and leave some alkalinity in the effluent water. The buffer capacity of such an effluent that has reached equilibrium with the atmosphere would be governed by the shaded H₂O-CO₂ curve in Figure 9. Ideally the solution would have a pH = 6.3 because the CO₂ maximum occurs at pK₁ = 6.3, giving the solution considerable resistance to a decrease in pH due to further acid addition.

Buffering capacity due to H₂O-CO₂-metals

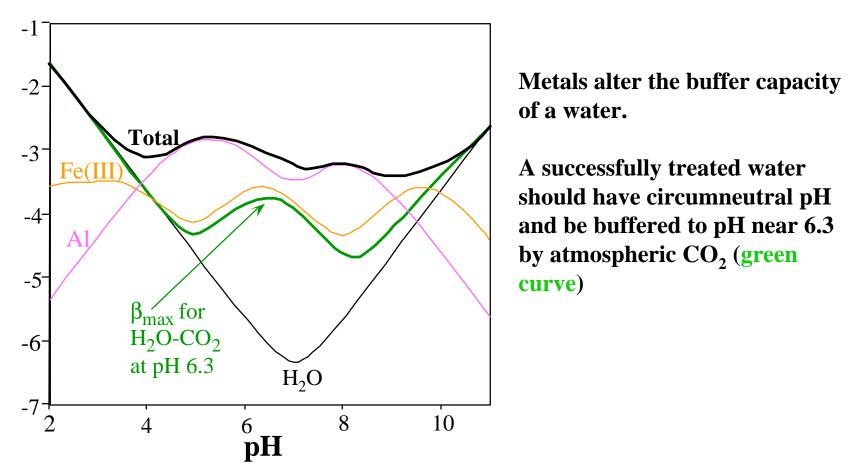


Figure 9. A plot of buffer capacity, **b**, for individual components and the total solution *versus* pH for the CO₂-H₂O system ($T_{CO2} = 10^{-3} \text{ mol } L^{-1}$) plus 25 mg L⁻¹ Fe(III) and 25 mg L⁻¹ Al. The arrow points to the maximum buffer capacity for a solution in which metals have been removed corresponding to pH = pK₁ for carbonic acid. 1095

Recommendations

Standard Method acidity is consistent with theoretical acidities at pH values < 4.5 (Hedin et al. 1994). Such low pH samples will always have alkalinity_{measured} equal to zero, and net alkalinities will thus be equal to the negative of the Standard Method acidity. These samples cause no problems in the interpretation of how much alkaline addition is required for treatment.

Using the standard method acidity titration, HCO_3^- is allowed to react with H⁺ from metal hydrolysis in higher pH samples which contain alkalinity, but the standard method alkalinity titration does not allow these reactions. A falsely positive value for net alkalinity calculated as alkalinity_{measured} - acidity_{measured} will result in the incorrect conclusion that a water is net alkaline and can "treat itself" with no alkaline addition, given aeration and adequate retention time in a pond or wetland. For example, the Site 20 sample in this study (Tables 2 and 4) has a Standard Method alkalinity of 37 mg L⁻¹ as CaCO₃ and a Standard Method acidity of 30 mg L⁻¹, giving a net alkalinity of +7 mg L⁻¹. However, following oxidation, precipitation of metals, and CO₂ degassing during storage, this water has a pH of 5.0, and iron oxidation at this pH would be very slow (Kirby et al., 1999). Calculation of net alkalinity as (alkalinity_{measured} - acidity_{calculated}, Hedin *et al.* 1994) gives a net alkalinity of -14 mg L⁻¹, suggesting that this water indeed requires alkaline addition for successful treatment.

The goals for mine water treatment include the removal of metals and the establishment of circumneutral pH and sufficient alkalinity to buffer pH against significant decreases. Citizens' watershed groups and regulatory agency personnel often face steep learning curves in their efforts to achieve inexpensive passive treatment for abandoned mine drainage. Although the hydrogen ion conservation approach (Morel and Hering, 1993, Stumm and Morgan, 1996; Johnson and Sigg, 1983) described above is the most rigorous approach, the calculation of net alkalinity as (alkalinity_{measured} - acidity_{calculated}) is much more easily applied and requires less geochemical background knowledge. In addition, this paper has demonstrated that this simpler approach is a significant improvement over the use of alkalinity_{measured} - acidity_{measured}. Although many monitoring schemes only collect data for total or dissolved iron, this approach does require the speciation of iron into Fe(II) and Fe(III) species. Care must be taken to ensure that water samples for Fe(II) are either analyzed very quickly or preserved (0.02 μ m filters, HCl) such that Fe(II) does not oxidize before analysis. For samples with pH values greater than approximately 5, it is possible to use dissolved iron as a reasonable proxy for dissolved Fe(II) concentrations in the absence of data for Fe(II).

Recommendations, continued

An alternative approach to the calculation of net alkalinity is suggested by the fact that net acidity (the x-axis value in Fig. 8) is equal to the Standard Method acidity. *As long as negative values are reported by laboratories*, the negative of the Standard Method acidity can be used as a net alkalinity in treatment design. If this latter approach is used, no alkalinity need be measured, and the holding times for acidity samples may not be critical. ASTM Method D1067(92) (ASTM, 1998) states that time between sampling and analysis be "as short as practically possible" and that "essentially immediate analysis is desirable for those waters containing hydrolyzable salts that contain cations in several oxidation states." The oxidation, hydrolysis, and gas exchange reactions that the short holding times are designed to preclude will occur during a storage period and during a standard method acidity titration. It is likely that standard method acidity values on samples immediately analyzed and samples stored for weeks will be equal. Note that this study did not perform experiments to test this hypothesis.

What we hope to have shown:

Alkalinity present in samples reacts with acidity during

standard methods of titration

 $Fe^{3+} + H_2O = FeOH^{2+} + H^+$ $H^+ + HCO_3 = H_2CO_3$

 $\overline{Fe^{3+} + H_2O + H_2O_3} = \overline{FeOH^{2+} + H_2CO_3}$

Alk from sample consumed in Acidity titration, but counted in Alk titration Acidity driven off as CO₂ in Std Method, not counted

CONCLUSIONS

- Standard Method titrations give consistent results
- Standard Method (APHA & EPA) acidity measurements
 - underestimate CO₂ acidity (not necessarily a problem)
 - underestimate metal acidity (a problem)
- "Net Alkalinity" = (alk-acidity) based on Std Methods is not correctly interpreted & underestimates acidity - may result in inadequate treatment
- CO₂ driven off by Std Meth acidity, not by H₂O₂ method
- PHREEQC modeling supports these interpretations

RECOMMENDATIONS

- Avoid (SM alk SM acidity) for treatment design
- Use (SM alk calc acidity) for treatment design
 - requires Fe(II)/Fe(III) speciation from analysis, field pH, and other metal concentrations

• Or, use SM Acidity as a measure of Net Acidity, <u>provided that lab will</u> <u>report negative values</u>

• With the above, use pH of stored-H₂O₂ titration to give reasonable indication of pH of passively treated water

References Cited

American Public Health Association (APHA), 1992. *Standard Methods for the Examination of Water and Wastewater*, 18th ed., American Public Health Assoc., Washington, DC.

American Society for Testing and Materials (ASTM), 1998. Standard test methods for acidity or alkalinity of water: D 1067-92, in *Annual Book of ASTM Standards*, Sect. 11, Water and Environmental Technology, ASTM, West Conshocken PA.

Drever, J. I., 1997. The Geochemistry of Natural Waters, 3rd ed., Prentice Hall, Upper Saddle River, NJ.

GeoTechnical Services, Inc., 1982. *Operation Scarlift: Quakake Tunnel Mine Drainage Pollution Abatement Study*, Report No. SL-135-10 to Pennsylvania Dept. of Env. Resources, Harrisburg PA.

Hedin, R. S., Nairn, R. W., Kleinmann, R. L. P., 1994. *Passive Treatment of Coal Mine Drainage*, US Bur. Mines Info. Circ. No. 9389, US Dept. Interior: Washington, DC.

Johnson, C.A., Sigg, L., 1983. Acidity of rain and fog: Conceptual definitions and practical measurements of acidity. *Chimia*. 39, 55-61.

Kirby, C. S., Thomas, H. M., Southam, G., Donald, R., 1999. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. *Applied Geochemistry*. 14, 4, 511-530.

Langmuir, D., 1997. Aqueous Environmental Geochemistry; Prentice Hall, Upper Saddle River, NJ.

Morel, F. M.M., Hering, J. G., 1993. Principles and Applications of Aquatic Chemistry, John Wiley & Sons, Inc., New York.

Parkhurst, D. L., 1995. User's Guide to PHREEQC - A Computer Program for Speciation, Reaction Path, Advective-transport, and Inverse Geochemical Calculations, Water. Resour. Invest. Rep. No.95-4227, US Geol. Survey, Lakewood CO.

Pennsylvania Department of Environmental Protection (PA DEP), 2001, written communication, Bureau of Laboratories, Harrisburg, PA.

Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., John Wiley & Sons, New York.

US Environmental Protection Agency (USEPA), 1997. Standard Operating Procedure for the Analysis of Acidity in Water: Method 305.1 NS (Titrimetric), http://www.epa.gov/reg5ocrl/sop/gco4.thml/5/01, accessed January 5, 2001.

US Environmental Protection Agency (USEPA). 1988, Standard Operating Procedure for the Analysis of The Alkalinity in Water: Method 310.1 NS (Titrimetric, pH 4.5), http://www.epa.gov/reg5ocrl/sop/gco4.htm; accessed February 24, 2001.

Wilson, H. 2001, personal communication, Wilson Testing Laboratories, Shamokin, PA.