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Abstract. Accurate characterization of minesoil overburden constituents associated with strip mining 
is an important part of the pre- and post-mine regulatory process. Characterization of soil material 
requires sampling of some kind, which implies that 1) the sample material selected must be 
representative of the area to be characterized and 2) the sample volume (support), size (number of 
samples), and pattern must be able to support a reasonable decision making process. Therefore, the 
end use (baseline information, monitoring, or remediation) of this information should dictate the 
sampling approach; which in turn, is based on the decision to be made and the amount of uncertainty 
that is allowable. Uncertainties and errors are an integral part of the sampling, laboratory analysis, 
and spatial characterization processes, arising at each stage. Mathematical approaches such as 
sampling theory & practice and geostatistics can quantify the amount of error or uncertainty 
associated with the various stages of sampling, analysis and characterization, as well as distinguishing 
sampling errors from laboratory errors. These statistical tools can be used to manage errors and 
uncertainties at each stage of the process, providing confidence to 1) regulatory agencies that 
compliance has been achieved and 2) mining companies that unnecessary remedial costs will not be 
incurred. Statistical tools provide a framework for characterizing the wide variety of minesoil 
constituents and conditions encountered in mine operations. The use of statistically-defined 
monitoring or remedial decision units ofa given area, for example, 5.7-acre grids in Texas, are shown 
to be consistent with the United States Protection Agency's long-standing guidelines and 
recommendations for remedial activities. Site-specific variability must always be taken into account 
when designing a sampling program and caution is recommended in the selection of sampling 
methods (i.e. compositing versus discrete samples). 

Additional Key Words: Data quality objectives, exposure unit, management unit, composite 
sampling, grid sampling, volume-variance relationship, and error management 
Introduction 

The establishment of a uniform sampling 
methodology for minesoils is a difficult task due to the 
potential variability encountered at a specific site and 
variability between different sites. Given this, 
regulatory perspectives in minesoil monitoring and 
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evaluation must account for both the unique conditions 
and attributes at each site, as well as different 
conditions between sites. Characteristics of specific 
sites should be investigated and incorporated into the 
minesoil monitoring and remedial decision-making 
processes for those sites. Sites exhibiting more 
complicated situations can be expected to require 
greater levels of effort; whereas, sites exhibiting low 
levels of variability will probably require less scrutiny 
and sampling. 

Analysis of the spatial variability at a 
particular site provides valuable insights and helps 
quantify the amount of sampling that will be required 
to reduce the uncertainty in decision-making to 
acceptable levels. Geostatistical techniques, such as 
variograms and kriging, are valuable tools in assessing 
both short- and long-range spatial variability. Each 
minesoil constituent can be evaluated separately, in 
order to determine the unique nature of its variability 
within its site-specific context. Figure 1 presents a 
geostatistically-created graph showing what earth sci-
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Figure 1. Decline curve showing increased statistical confidence (reduced error) with additional sampling (after Myers, 
1997). 
entists have known intuitively: with few samples, 
uncertainties and errors are high, whereas, with many 
samples, uncertainties and errors are greatly reduced. 

Similarly, sampling theory & practice (STP), 
as developed by Pierre Gy, provides value by assessing 
the magnitude of the errors that are inevitably 
associated with a sampling or subsampling operation 
(Pitard 1987). High-quality samples are necessary as 
poor-quality samples cannot be relied upon for accurate 
decision making. STP demonstrates the so-called 
nugget effect (short-range variability) is related to the 
fundamental error (FE). The relationship between 
geostatistics and STP is not coincidental; both sciences 
were developed by practitioners working on complex 
problems in the mining industry. 

Both geostatistical appraisal (GA) and STP 
are a function of a support volume, that is, the physical 
size of the sample or subsample. The support volume 
subsequently influences STP errors, variogram analysis 
and model parameters, as well as the size of the 
mapping and/or decision-making unit for monitoring or 
remediation. Thus, the common theme of support runs 
through each of the primary activities in minesoil 
characterization: sampling and subsampling (STP), data 
analysis (GA), and decision making. This paper will 
stress the importance of analyzing the variability and 
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uncertainty associated with each support level 
(sampling, data analysis, decision-making) and their 
interrelationships. The paper will also present some 
data that illustrate the need for caution when selecting 
sampling methods. 

The Pw;pose of Samplin~ 

The objective of any sampling program 
depends on the questions that need to be answered 
regarding the target material. In general, there is an 
almost infmite number of reasons for sampling. For 
minesoil assessment, three common objectives 
represent many of the sampling programs initiated: (1) 
characterization of soil materials ( content and 
variability); (2) as a basis for decision-making; and (3) 
verification of existing data. 

First, it is often necessary to characterize the 
nature of the soil material. For instance, pre-mine soils 
will need to be sampled and characterized so that post-
mine soils can be compared to them. If post mine soils 
show unsuitable levels of analytical parameters, 
remedial treatment of the minesoil may be necessary. 

Characterization of the soil can involve many 
soil parameters, including pH, acid-base account 
 



(ABA), electrical conductivity (EC), heavy metals 
content, and so forth. In addition to the content of each 
parameter of interest, it is also important to assess the 
variability of the parameters. Parameters exhibiting 
high variability are more difficult to predict. It follows 
that decisions made at highly variable sites contain 
more uncertainty than at sites where the parameters 
exhibit more consistent behavior, assuming equal 
numbers of samples. 

Second, samples provide a basis for decision 
making. Minesoil characteristics cannot generally be 
deduced by visual inspection; rather, it is necessary to 
perform laboratory analysis on the material. Based on 
the laboratory results, decisions can be made regarding 
potential remedial actions to the minesoil. The 
acquisition of "hard" data via sampling is necessary as 
it provides a defensible basis for subsequent decisions 
and actions. However; the manner in which samples 
are taken (based on sampling design) can have a great 
influence on the analytical data that are produced. This 
will be discussed later in the paper. 

Third, sampling may be used to verify existing 
data. A sampling program initiated by a regulatory 
agency or a mining company may produce results that 
are questioned by the other party. Sampling provides a 
way in which to obtain additional information and, 
hopefully, settle disputes. 

Difficulties In Sampling 

Extamolation To Larger Volumes 

Samples play a key role in minesoil 
characterization. Samples act as our window on the 
world, and, by proxy, give us an idea as to the types 
and proportions of constituents composing a particular 
volume of soil material. Yet, we impose a great 
responsibility on and demand a lot of information from 
a single sample. Typically, a few pounds, or less, of 
sample material is extracted from the ground. This 
sample is then sent to the laboratory where a 
subsampling operation is generally performed. Finally, 
this tiny bit material is submitted to the analytical 
procedure. The resulting analytical data are then asked 
to represent a much larger volume of material, often 
exceeding multiple acres or tons. 

Extrapolating from the specific (i.e. a sample 
location) to the general (the surrounding area) is an 
inductive process. Theorems of logic caution that this 
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is a risky endeavor. Therefore, it is prudent to be 
cautious in extrapolation and interpolation, doing so 
with an understanding of the risks and errors associated 
and by using error management techniques to mitigate 
their impacts. 

Separating Laboratocy Errors From Sampling Errors 

Two areas that are often confused are 
laboratory errors, also known as analytical errors, and 
sampling ellors. It is important to understand that these 
errors are distinctly different, arise from different 
causes, and must be treated independently. They do 
share the common feature in that both contribute to the 
error and uncertainty in minesoil characterization. 

Laboratory error is familiar to most people 
who are involved with sampling. Laboratory errors are 
those that arise from the analytical process itself: the 
extraction method used, the type of analytical device, 
and incorrect interpretation or calculation of results. 
These types of errors have been widely studied and 
documented in the literature. One well-known example 
is the U.S. Environmental Protection Agency's 
(USEPA) SW-846 guidance document. 

In contrast, sampling errors are largely 
unknown or misunderstood. A formalized sampling 
theory & practice has been developed (Gy 1979, Pitard 
1989) based on careful study of the sampling of 
particulate materials in the mining industry. Important 
decisions classifying rock into ore versus waste 
categories are made on a daily basis at a working mine. 
The implications of incorrect classification are quickly 
felt in hard, economic terms. Experience has shown 
that it is often difficult to correctly classify ore and 
waste, with the mined material commonly differing 
from that which was predicted or expected. 

Sampling errors arise from the inherent 
heterogeneities in the soil material. STP recognizes 
that two types of heterogeneities exist: ( 1) constitution 
heterogeneity and (2) distribution heterogeneity (Pitard 
1989). Constitution heterogeneity is the variability that 
is inherent to the composition of each particle or 
fragment making up the material of interest. 
Distribution heterogeneity is the manner in which 
separate and distinct particles are scattered or spread 
out within the material. 

All sampling errors arise from these two 
heterogeneities. Seven distinct sampling errors result 
from the heterogeneities in particulate material (Pitard 
1989). They are the .fundamental error (FE), the 
 



grouping and segregation error (GE), the long-range 
heterogeneity fluctuation e"or (CE2), the periodic 
heterogeneity fluctuation error (CE3), the increment 
delimitation e"or (DE), the increment extraction error 
(EE), and the preparation error (PE). Their 
relationship to one another and to laboratory analytical 
error is shown in Figure 2. The discrete model errors 
components relate primarily to sample collection and 
laboratory analysis; the continuous model error 
components relate to spatial and temporal variability. 
Detailed discussion of heterogeneities and the 
individual sampling errors is beyond the scope of this 
paper. 

STP provides ways to mitigate or minimize 
the impacts of sampling errors in a sampling program. 
Sampling errors, along with laboratory errors and 
estimation errors, are inevitable. As such, one should 
accept their existence and use the existing science to 
manage these errors, constraining them to tolerable 
levels. 

Defining Sampling Objectives 

What Question<s} Will Be Answered By Sampling?. 
Surprisingly, sampling objectives are often not clearly 
defined. As a result, data may be collected that do not 
provide the information necessary to support a 
particular decision. While the lesson is probably self-
evident, establishment of sampling objectives is not 
always easy. 

For example, if it is necessary to know 
whether the average sand content over a 5.7-acre grid 
unit exceeds a threshold level, a compositing approach 
may be appropriate to support a decision. If the 
question is either 1) what areas of the 5. 7 acre grid fall 
above and below 80% sand content; 2) what is the 
spatial variability within the grid unit; 3) what 
proportion of the grid area contains greater than 80% 
sand; or 4) what is the statistical distribution of sand 
content data in the grid unit, other sampling approaches 
must be implemented. 

Formulation of the appropriate sampling 
objectives can be achieved in a variety of ways. One 
model used in environmental applications is the 
USEPA's Data Quality Objectives (DQO) approach. 
USEPA has been formally committed to data quality 
for over a decade, first issuing a DQO guidance 
document in 1987, then updating and streamlining the 
model in 1994. The DQO process is a seven-step 
method to assist in assuring that the appropriate type, 
quantity, and quality of data are collected for decision 
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making purposes. The DQO process also stresses the 
efficient use of time and fmancial resources. 

The purpose of DQOs is to (1) clarify the 
study objective; (2) define the most appropriate data to 
collect; and (3) specify tolerable limits on decision 
errors, which will be used as the basis for establishing 
the quantity and quality of data needed to support the 
decision. It has been used effectively to establish 
sampling priorities, manage sampling budgets, and 
reduce conflict between regulatory and industry groups. 
The seven basic DQO steps are set forth below: 

Step 1: State the problem 
Step 2: Identify the decision 
Step 3: Identify the inputs to the decision 
Step 4: Defme the study boundaries 
Step 5: Develop a decision rule 
Step 6: Specify tolerance limits on decision errors 
Step 7: Optimize the design 

Complete discussion of the DQO process is 
beyond the scope of this paper; more complete 
information can be obtained from USEPA (1994). 

Support Issues. Geostatistical appraisal (GA) in 
addition to STP, must also address important support 
issues. For example, the experimental variogram is 
sensitive to the support volume of the samples. 
V ariograms calculated on samples having a small 
support will show more variability and have a higher 
sill than for samples with a larger support. Also, the 
kriging estimation e"or for small blocks will be higher 
than that for large blocks. As such, greater uncertainties 
surround small blocks as opposed to large blocks, 
assuming equal numbers of samples and that equivalent 
variogram parameters are used during estimation 
(kriging). These examples are the expected result of the 
volume-variance relationship (David 1977). 

The DQO model ofUSEPA also incorporates 
the idea of support into the characterization and 
decision making process. DQOs defme an exposure 
unit (EU), which can also be considered a management 
unit (MU), that is the fundamental basis for decision 
making. The size and shape of an MU is dependent 
upon the sampling objective. It may be a 50 ft by 50 ft 
rectangle representing a typical residential yard, or it 
may be a 12 ft. by 1 mile by 6 inch deep parallelpiped 
along a highway where lead (Pb) contamination in soils 
(the result of automobile emissions from leaded 
gasoline) will be assessed. 
8 
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In the USEPA model, the EU/MU functions as 
the primary decision unit for remediation. If the 
average concentration of an EU/MU exceeds a risk-
based threshold, then the EU/MU must be cleaned up 
to acceptable levels. If not, no action is necessary. 
Geostatistical appraisal (GA) can be used to assess the 
uncertainty on any size of EU/MU, revealing to all 
parties the probability of misclassification relating to 
the threshold. Estimated rates of Type I and Type II 
errors (false positives and false negatives) may 
calculated. 

An MU-type approach is used by the state of 
Texas in pre- and post-mine soil monitoring, where the 
basic MU can range in size, depending on the site-
specific variability. A common MU size is a ~.7-acre 
grid; however, there are mines that have 20-acre grids 
when there is less minesoil variability. Based on a 
composite sample ( 1 core/acre), the average level of an 
analytical soil parameter over the grid area is 
determined. The distribution of post-mine parameter 
values in 5. 7-acre grids is then compared to the pre-
mine distribution, to determine if remedial action may 
be required. 

What Is Representative Sampljng? As with the 
heterogeneity terms, the term "representativeness" is 
often used without definition. Pitard (1989) offers a 
mathematical, and hence, objective, definition of 
representativeness, where the mean square of the 
sampling error r2(SE), the sum of (1) the variance of 
the sampling error o1(SE) ( i.e. the precision), and (2) 
the square of the mean sampling error m2(SE) (i.e. 
accuracy), is smaller than a level of representativeness 
r/(SE) defined or agreed upon as acceptable. 

Other definitions of representativeness are not 
exact, an example being the definition in 40 CFR 
260.10: Representative sample means a sample of a 
universe or whole (e.g. waste pile, lagoon, ground 
water) which can be expected to exhilill the average 
properties of the universe or whole. Please note that 
the previous definition does not address variability 
between the sample and the universe or whole, nor 
does it address tolerable deviations or errors as Pitard 
(1989) does. Pitard's method, used in conjunction with 
the DQO process, affords the opportunity to negotiate 
a definition of representativeness that is acceptable to 
all parties. 

Definition of Apprawiate Domains 

To the extent possible and practical, it is 
necessary to respect different geological domains 
during sampling. Native soil conditions may vary due 
to parent material, climate, vegetation, topography, 
amount of weathering that has occurred, and the soil 
horizon. Samples should be confmed to domains that 
are similar in nature; mixing domains invites bias and 
confusing results. This is equivalent to a stratified 
sampling approach (Gilbert 1987); which is often 
difficult to implement as domain differentiation may be 
difficult, time-consuming, and costly. 

Selection of Sampling Ap_proaches 

A variety of methods exists to determine the 
locations and arrangement of soil samples. 
Accompanying each method are assumptions and 
implications that should be considered. A few methods 
are reviewed below. 

Non-Statistical Two primary types of non-statistical 
sampling approaches exist, haphazard and judgmental. 
Haphazard sampling takes the attitude that "any 
sampling location will suffice" (Gilbert 1987). Given 
this latitude, samples are often taken from locations 
that are more convenient than representative. This 
automatically introduces a bias of unknown sign and 
magnitude into the sampling. 

Judgmental sampling yields the power of 
location selection to one or more individuals. The 
implication is that representative locations can be 
determined. There is no way, however, to quantify the 
degree of accuracy in the resulting sampling. Also, if 
the credibility of the "expert" is later questioned or 
shown to be poor, then the resulting samples might also 
be considered unreliable. 

Non-statistical approaches to sampling are 
generally discouraged because of the biases introduced 
and the inability to quantify errors. 

Statistical Five major statistical approaches to 
sampling are available for implementation. They are 
strict random, grids (and other "patterned" geometries), 
randomized grids, random stratified grids, and 
probabilistic targeting (search sampling). 

Strict random sampling allows the selection of 
each sampling location from anywhere within the area 
or volume of interest. Strict random sampling, while 
technically unbiased, often results in problems for 
spatial sampling. Strict random sampling tends to 
produce clusters of data, meaning that some areas are 
over-represented and others under-represented by the 
sampling. 



Grid sampling is a common approach to 
sampling when a spatial area needs to be assessed. 
Many types or patterns of grids are available (Gilbert 
1987). The grid helps to eliminate the problem of 
localized clustering introduced by strict random 
sampling. However, the selection of the grid origin is 
often biased, introducing bias into the sampling results. 

Randomized grids are an improvement on grid 
patterns in that the origin is selected by a random 
process. Once the origin is established, aJJ other grid 
locations are then known (Myers 1997). While better 
than non-random grids, a small bias is introduced to the 
non-origin locations. 

Stratified random grids combine the 
randomization feature of strict random sampling with 
the spatial coverage feature of grid sampling. Stratified 
random sampling establishes a grid, then within each 
grid a sample location is selected at random (Myers 
1997). An example is shown in Figure 3. This approach 
maintains the equiprobability conditions necessary for 
unbiased sampling, that is, every location must be 
equaJJy available for selection during the sampling 
process. 

Probabilistic targeting (search sampling) 
focuses on finding areas that contain constituent levels 
exceeding established thresholds or limits. The 
sampling program is then designed to yield results such 
that if no unacceptable areas are discovered, a 
confidence level (90%, 95%, etc.) wiU be associated 
with the results. The process demands that a target size 
and shape be defined, along with a decision as to how 
much uncertainty wiH be tolerated. Once these 
parameters and/or assumptions are established, a 
number of pertinent scenarios can be addressed. 

Spatial Variability 

Geostatistical Tools. Large amounts of spatial 
variability are typically encountered at minesites, in 
both ore reserves and regraded mine soils (David 1977, 
Myers and Brown 1990). Experience has shown that in 
addition to spatial variability, spatial correlation 
generaJJy exists between nearby sample data. Since 
classical statistical methods demand independence 
between samples, techniques capable of dealing with 
the spatial correlation are necessary. 

Geostatistical approaches are able to quantify 
the spatial correlation components present at a site and 
incorporate them into estimations and error 
quantifications. V ariogram analysis examines and 
quantifies the degree of spatial correlation for different 
parameters at a site. An example of a variogram is 
shown in Figure 4. Plotting distance between samples 
on the X axis and variance on the Y axis, the variogram 
shows that, as the distance between samples increase, 
variability also increases. The rise in the variogram 
eventually levels off, creating a "silf' equal to the 
population variance. The distance at which the graph 
reaches the sill is called the range. The range indicates 
the distance at which samples become independent of 
each other, that is, nearby samples do not "share" 
correlation information. 

Figure 4 shows that the variogram graph does 
not always start at the origin. Instead, it starts part-way 
up the Y axis. This implies that variability exists at zero 
distance. This is caHed the nugget effect. The nugget 
effect primarily reflects two phenomena: (1) the short-
range variability inherent in the material being 
sampled, and (2) the fundamental sampling error FE. 
The nugget effect introduces uncontrolled variability 
into estimates of spatial areas or volumes, therefore, a 
high nugget effect is undesirable. 

The process of kriging uses the variogram 
parameters (nugget effect, siH, and range) along with 
sample data to estimate the average constituent level in 
a defined area or volume. Kriging will appropriately 
weight the sample data points according to their 
distance from the block. Points closer to the block wiH 
receive more weight; points further away will receive 
smaHer weights. Weighting in this manner is consistent 
with both intuition and with results shown by 
variographic studies. 

In addition to estimating the average of the 
block, kriging also calculates the estimated error 
(standard deviation) associated with the estimate. Using 
the kriging standard deviation, the uncertainty on the 
block estimate can be calculated. Figure I showed a 
decline curve where additional samples contributed to 
a corresponding reduction in error. Kriging also 
incorporates this concept into the estimation error: the 
more samples used, the lower the estimation error. 

Resource Limitations 

AH sampling and characterization efforts are 
subject to resource availability constraints. The most 
critical are time and money, both of which are 
notoriously finite. In addition, regulatory deadlines 
impose additional constraints on both the mining 
company to comply and the regulatory agency to 
respond in a timely manner. 
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Review of Existing Protocols in Texas 

The existing system for post-mine soil 
monitoring in the state of Texas is to base decisions on 
different-sized MUs (ranging from 5.7- acre to 20-acre 
grid areas). An MU greater or lesser than 5.7 acres 
may be instituted based on the site conditions. A 
sampling density of 1 core per acre is followed. The 
appropriate number of samples are taken within the 
grid area and mixed to make one composite sample; 
with a composite sample being produced for four depth 
increments: 0-1 ft, 1-2 ft, 2-3 ft, and 3-4 ft. Initial soil 
samples are to be taken no less than 200 ft from each 
other. This preceding sampling is a generic example, 
mine-specific sampling designs are implemented based 
on the particular minesoils that are found. 

A DQO MU decision process is then 
implemented for the soil constituents. The laboratory 
result corresponding to the composite sample, 
essentially an average over the 5.7 acre MU, is taken to 
represent the entire MU. Further decisions pertaining to 
comparisons of pre- and post-mine conditions, liming 
requirements, and other relevant parameters are made 
using the constituent results for the entire MU. 

Error Management For Minesoil Constituents 

Data Duality Objectives 

The use, in Texas, ofa 5.7-acre or 20-acre MU 
follows at least three aspects of the USEPA-approved 
DQO process for environmental decision making. First, 
a MU area of concern is defmed. Next, an average 
concentration for the MU is determined by means of 
composite sample data. Finally, subsequent decisions 
and actions are based on the average concentration over 
the MU, as determined by a multiple-sample 
composite. 

It is important to evaluate the assumptions 
used in the DQO decision rule. The intent of USEPA is 
to establish the average concentration of the entire 
MU. Under this averaging approach, a wide variety of 
spatial distributions of the COC may be present at the 
site, all of which may be tolerated. For example, the 
distribution of a particular parameter may be quite 
uniform, with little variation over the MU area. In 
another case, the distribution of the parameter values 
may range over two or more orders of magnitude from 
one side of the MU to the other, showing high 
variability. Alternatively, the high variability may be 
distributed somewhat randomly, with high hot and low 
12
concentration zones mixed in various (and unknown) 
arrangements. Different spatial arrangements and 
levels of spatial variability have been documented and 
mapped in regraded minesoils for pH and ABA values 
in Texas mines (Myers and Brown 1990). 

Effects of composite Sampling 

By taking a composite sample, certain 
influences have been exerted on the decision-making 
process. As described above, any understanding of the 
spatial variability over the MU has been lost. An 
assessment of the within-MU variability can only be 
obtained by analyzing the individual samples that make 
up the composite. USEPA is comfortable with this loss 
of information based on three considerations: 1) the 
risk-based approach, supported by sophisticated health-
risk analysis models and a focus on average parameter 
concentrations; 2) careful definition of an 
appropriately-sized MU; and 3) a sufficient number of 
samples taken in each MU to support a defensible level 
of decision making. 

Note that sufficiency of samples is related to 
the DQOs. The number of samples will be different 
depending on the question to be answered by sampling. 
For example, data requirements may vary for situations 
in which 1) the 95% upper confidence limit (UCL) 
needs to be below a threshold standard; 2) the number 
of false positives and false negatives needs to be 
minimized; 3) the lateral and/or vertical extents of 
unacceptable concentrations ne¢ds to be mapped with 
confidence; or 4) the pre-mine data distribution needs 
to be compared with the post-mine data distribution. 

The compositing of samples addresses another 
primary concern of the DQO process, that of efficient 
utilization of resources. DQOs recognize that money 
is scarce and sampling should be done cost-effectively. 
Compositing achieves this objective. The task, then, is 
to balance the information needs obtained by buying 
sample information against the limited resources that 
may be available. All of this must be done within an 
error management framework. 

Compositing of samples can present some 
problems, however, that should 11,e addressed on a site-
specific basis. The compositiqg of physical samples 
may not be appropriate for all minesoil parameters. 
For example, matrix effects (FW1damental error, FE) 
can significantly alter results for pH values of 
composited samples Table 1. The calculated sand 
content and neutralization potential parameters, 
however, correlated well with. the actual analysis 
3 



values. The data in Table 1 were derived from a bench 
test that mixed ultra-acidic and alkaline materials in 
different proportions. These preliminary results 
indicate that further testing on the parameter value 
effects of mixing unlike materials is warranted. 

The bench test data show that the calculated 
pH value (based on weight-averaging the samples) of 
a composite sample may vary greatly from the actual 
pH obtained when the sample is analyzed. This 
situation can occur in minesoils where there are both 
acid and alkaline materials that are composited together 
in the same sample (i.e. samples from an alkaline 
material-amended minesoil that may contain a small 
volume of limestone aggregates). This also suggests 
that individual samples that are analyzed for pH should 
not be "composited" using a mathematical average of 
the values, due to the logarithmic nature of the 
parameter and variable minesoil chemical and 
mineralogical composition. 

Field data exist that support the need for 
caution when minesoil samples are composited. The 
following data (Figure 5) were obtained from minesoils 
in South Texas that were sampled in 6-acre grids (six 
individual samples were mixed to produce a composite 
for each grid), where the predominant field pH of each 
sample was estimated before the sample was added to 
the composite. Field pH data were obtained with a 
universal pH dye indicator kit. The predominant pH of 
the material was placed in either of four classes: A (pH 
:!:: 4); B (pH> 4.5 and pH ~6); C (pH> 6 and pH ~ 7); 
and D (pH> 7). There was good correlation between 
the field pH and the pH measured in the laboratory, as 
indicated by the two box plots where 100% of the 
samples had no field pH Class A materials (average lab 
pH of 7.8) and 100% of the samples were field pH 
Class A (average pH of 3.8). The median composite 
pH decreased as the proportion of Class A (field pH ~ 
4) samples increased. The data indicate that composite 
samples from grids, where 4 of 6 samples (approx. 
67%) were field pH Class A, could still produce a 
laboratory pH greater than 5.5 half of the time. The 
practical implication is that a pH of 5.5 could be 
assigned (50% of the time) to grids where over two-
thirds of the area contained pH values equal to or 
below 4. This may be acceptable or not; however, this 
possibility must be addressed when the size of the MU 
is determined. 
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swport Considerations 

As discussed previously, several support 
influences must be considered. First, in order to assess 
the nature and magnitude of the spatial variability, it is 
necessary to determine which support unit is 
contributing most to the total variability. As a practical 
matter, this means determining whether the sampling 
and/or laboratory error is greater than or equal to the 
spatial variability. 

Pitard (1990) studied duplicate and replicate 
minesoil samples (neutralization potential, potential 
acidity, and ABA) in an effort to distinguish nugget-
type variability (sampling/subsampling error and 
laboratory error) versus long-range variability of 
regional trends (5 acres, 20 acres, etc.). Results 
indicated that while short-range errors were relatively 
high, they were not significant in comparison to 
regional trends, which showed greater variability. 
However, variability between 5-acre grids was not 
found to be much different from that shown by 20-acre 
grids. 

Pitard (1990) showed that the greatest amount 
of spatial variability for the parameters studied appears 
to exist within a few feet of a given sample, and that 
long-range trends may be best observed on units of20 
acres or larger. This is consistent with the results 
obtained by Myers and Brown (1990), where extremely 
high variability was encountered at distances of I 00 ft, 
while long-range variability (800 to 1200 ft) often· 
produced good spatial correlation structure 
(variograms). These results indicate the greatest 
variability in the studied minesoils occurred at a very 
small scale, less than I 00 ft and perhaps as small as one 
to five feet. Dollhopf and Birkhead (1992), using 
composited samples, also found small differences 
between variability in decision units of 5. 7 acre versus 
20 acre grids for soil pH and ABA. Reductions in 
variability were 10% and 12% respectively when the 
MU decision support was increased from 5. 7 to 20 
acres. 

Given the apparent high level of spatial 
variability at very short distances, two general 
approaches to improving minesoil characterization 
arise. The first is to increase the size of the field 
sample taken. This will reduce variability on the small-
scale (nugget type). The second is to increase the 
number of increments per sample (local compositing). 
 



Table 1. Results from bench test where ultra-acid and alkaline materials were mixed in different proportions (mean values for duplicate samples). 

Proportion of Material Mix pH Sand Content Neutralization Potential, meq/lOOg 

Alk,% Acid,% Cale.t Actual Rel. Diff., % t Cale. Actual Rel. Diff., % Cale. 

0.0 100.0 2.7 34 

23.0 77.0 3.8 6.0 37 30 32 6 90 

37.5 62.5 4.6 6.1 25 28 2/ 0 150 

54.5 45.5 5.4 6.1 11 25 26 4 221 

71.5 28.5 6.3 6.2 2 23 21 10 291 

91.0 9.0 7.0 6.4 9 19 19 0 373 

100.0 0.0 7.7 18 

17 4 

t Cale. - calculated values were determined by weight-averaging the corresponding proportions of the alkaline and acid materials. 
l Relative difference= Actual values - Calculated Values X 100. 

Actual Rel. Diff., % 

-6 

91 1 

158 5 

262 16 

295 1 

375 1 

410 
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Figure 5. Comparison of the proportion of individual field pH class A (pH s: 4) subsamples (cores) in a composite 
sample to the pH values obtained for each composite (numbers within figure correspond to the number of samples used 
for each box plot; circles represent outliers). 
This type of approach will emphasize the large-scale 
issues of spatial variability, which we can address, 
versus the micro-scale problems about which little, if 
anything, can be done economically. Both of these 
approaches must be considered while determining the 
appropriate size of the MU. 

Summary and Conclusions 

Use of a support-based approach to error 
management and decision making for minesoil 
constituents offers several advantages. The USEPA-
approved DQO/EU or MU model allows for variable-
size decision units, allowing regulators to decide on a 
case-by-case basis whether a 5.7 acre, 20 acre, or other 
size characterization and decision making unit is 
appropriate. Studies using STP (small-scale) and GA 
(large-scale) have shown that both sampling support 
and grid-size are key issues. STP and GA have also 
lead to an understanding of the major sources of 
variability in minesoils, thereby providing insight as to 
how to reduce and manage variability and decision 
errors. Site-specific variability must always be taken 
into account when designing a sampling program and 
caution is recommended in the selection of sampling 
methods (i.e. compositing versus discrete samples) for 
certain minesoil constituents. 
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