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Abstract. Reclamation specialists have been interested in developing predictive equations to 
assess reclamation efforts in reconstructing soils to support vegetation growth. One predictive 
effort is associated witl1 a statistical approach examining somewhat large data sets containing plant 
growtl1 yields and soil variables. While the results from such procedures have been reported for 
the last seven years, a description of the methodology has not been described since 1987. This 
paper describes this statistical vegetation productivity model building process. To complete the 
basic analytic steps in the process, a statistical computing software package is required to conduct 
principal component analysis (PCA) and multiple regression analysis. The field data required to 
conduct the analysis are extensive. All crops and woody plants of interest (source of dependent 
variables) should be grown on all soil profiles (source of independent variables) for a period of 
approximately 10 years. The time period should include dry years, wet years, and average 
moisture years and should ideally include reclaimed and undisturbed soils. For any individual 
investigator, this type of data set would be expensive and time consuming to generate; however, 
the former United States Soil Conservation Service (SCS) has conducted similar work for a fair 
number of counties in the United States of America and can provide a substantial portion of tl1e 
undisturbed soil database for investigators interested in developing a vegetation productivity 
equation for tl1eir region. Different units of measure across crop types are not necessarily an issue 
in vegetation productivity equation modeling, because each vegetation type is standardized to a 
mean of zero and a variance of 1. Then the various crop types and woody plants are examined 
with PCA. This statistical treatment allows the investigator to determine the number of 
dimensions necessary to explain the variance across all vegetation types. Ideally, if all of the 
crops of interest covary together, they can be combined into one dimension generating one 
dependent variable; otherwise an investigator may have to develop an equation for each significant 
dimension indicated in PCA. Soil factors suitable for regression analysis are calculated by 
employing a soil profile weighting formula. Before conducting regression analysis, a regression 
screening procedure may be employed to search for tl1e most promising main effect, squared 
terms, and two variable interaction terms. The Maximum-R-squared improvement technique has 
been determined to be the best stepwise selection procedure to search for the best equation. Once 
a regression equation is selected, it can be further analyzed with bootstrap, subsampling, and 
jackknife statistical procedures. Finally, developed equations should be evaluated with results 
from reclaimed soils. These procedures for the basis of tl1e methodology. 
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Introduction 

This paper describes the fundamental 
procedures specific to the vegetation productivity 
model building process. To complete tl1e basic analytic 
steps in the process, a statistical computing software 
package is required to conduct principal component 
analysis (PCA) and multiple regression analysis. In 
my efforts, I used tl1e Statistical Analysis System (SAS) 
software for the microcomputer (1985); however, for 
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investigators wishing to apply the methodology similar 
statistical software packages may suffice. 

Table I. Dependent variables and units of 
measurement as recorded and published by the 
U.S. Soil Conservation Service (Jacobson 
1982). 

Abbreviation Vegetation Measured Average Yield 

Evergreen Trees 
JV Juniperus virginiana 
PG Picea g!auca densata 
PP Picea pungens 
PS Pinus ponderosa 

scopulorum 
CO Ce/tis occidentalis 
Deciduous Trees 

feet/20 years 
feet/20 years 
feet/20 years 
feet/20 years 

feet/20 years 

FP Fra.xinus pennSYlvanica feet/20 years 
PD Populus deltoidesfeet/20 years 
ST Salix alba tristis feet/20 years 

Potter (1986) describes two methods to assess the 
vegetation productivity capacity of the landscape. In 
the first method an empirical "shot-gun" approach, 
labeled by Potter as "inductive," is used where a wide 
array of variables is · examined by sampling the 
landscape and making statistical comparisons/ 
inferences. The second method is a heuristic approach, 
labeled by Potter as "deductive," where transects are 
sampled and Uie investigator develops generalities 
about the physical and chemical parameters governing 
vegetation potential of the landscape. Complementing 
Potter's descriptions, Reith (1986) provides an 
explanation of the fundamentals concerning 
reclamation models across a broad spectrum of 
reclamation applications ranging from the prediction of 
rill formation through multiple regression techniques to 
multi-equation stochastic ecosystem modeling of a 
grassland. These papers, published by the mid-l 980s, 
represent the general knowledge base prior to U1e actual 
development of statistical vegetation productivity 
models. 

UP Ulmus pumila feet/20 years 
Deciduous Shrubs Burley and Thomsen (1987) describe a 
CA Caragana arborescens feet/20 years discrete methodology to produce a quantitative 
CR Cornus sericea feet/20 years reclamation productivity equation. Unfortunately, this 
PA Prunus americana feet/20 years approach is labeled by Potter (1986) as the "shot-gun" 
PV Prunus virginiana feet/20 years approach. I would like believe that scientists have been 
SV Syringa vulgaris feet/20 years working for generations posing hypotheses and 
Agronomic Crops examining variables to determine their importance. 
SW Spring Wheat bushels/acre Eventually, a somewhat small set of potential predictor 
BA Barley bushels/acre variables can be examined in greater refined statistical 
OA Oats bushels/acre detail. While some individuals may wish to consider 

SF Sunflowers this a shot-gun approach, I would characterize tl1is pounds/acre 
SB Sugarbeets tons/acre approach as an indicator of U1e maturity of soil science 
SN Soybeans bushels/acre and reclamation activities allowing multiple variable 

tons/acre studies to be conducted. This advanced multi-variable GE Grasses/Legumes _____________________ complexity is evident in other disciplines such a 

1 meter= 3.281 feet; 1 foot= 0.3048 meter 
1 hectoliter = 2.837 U.S. bushels; 
1 U.S. bushel= 0.363 hectoliter 
1 hectare= 2.471 acres; 1 acre = 0.405 hectare 
1 kilogram= 2.2046 pounds avoirdupois; 
1 pound = 0.4536 kilogram 

I (Burley 1988) reviewed the historical 
development leading to the rise of predictive 
reclamation modeling as a tool to assist in pre/post-
mining landscape planning and design. Significant 
contributions leading to the development concerning 
predictive reclamation equations include works by Neill 
(1979), Pierce et al (1983), Lohse et al. (1985), Walsh 
(1985), Vories (1985), Doll and Wollenhaupt (1985) 
and Plotkin (1986). In addition to these investigations, 

econometrics, wildlife habitat modeling, water quality 
prediction models, and visual quality modeling. 

In my reclamation modeling efforts, the basis 
for this methodology originated with multivariate 
statistical concepts presented by Kendall (1939), 
requiring computationally complex matrix algebra (see 
Johnson and Wichern 1988). WiU1 the advent of U1e 
computer to perform matrix algebra operations for 
dimensions greater than three, multivariate statistical 
techniques made reclrunation productivity development 
possible. By computing eigenvalues and eigenvectors 
for all possible dependent variables such as crops and 
woody plants, an investigator could determine the 
extent of multi-variable covariance and develop an 
equation to represent a linear combination of variables 
to generate a single dependent variahle. In other \vords, 

790 



if the first eigenvalue was relatively large and the 
coefficient loadings of the eigenvector for the first 
eigenvalue were relatively similar, a simple equation 
derived from the eigenvector would suggest a linear 
combination of dependent variables that can be 
combined into one value per soil type. With one 
dependent variable value per soil type, it is possible to 
perform multiple regression analysis using one 
dependent variable. Gersmehl and Brown (1990) 
employed Kendall's method to examine multiple crop 
productivity values across geographic regions in the 
United States of America. Their work suggests that in 
the Midwest and Northern Great Plains, multiple crop 
productivity values often covary across soil types. 
Their work substantiates the concept that the soil 
preferences of various agronomic crops are indeed 
similar. Table 1 lists the vegetation types in Clay 
County, Minnesota that have been employed by Burley 
and colleagues to generate dependent variables, 
generally covarying as a group. 

These plant types are employed to predict 
vegetation productivity. However, the term "vegetation 
productivity" is a relatively weakly developed 
construct. In many respects vegetation productivity has 
been operationally expressed as vegetation yield, such 
as bushels per acre of harvested seed or feet of new 
apical terminal shoot growth per year and represents a 
certain anthropocentric perspective concerning plant 
gro\.vtl1. A plant physiologist may suggest that an 
abundance of seeds per acre does not necessarily mean 
that a vegetation type is internally healthy and an 
ecologist may suggest that unsustainable lush plant 
growth is not necessarily a sound ecological condition. 
Consequently I recognize tliat there exists the potentfal 
to develop new operational constructs for vegetation 
productivity. Nevertheless, in my vegetation 
productivity work, I have made that assumption that 
existing measures of vegetation yield and new plant 
growth are reasonable indicators of productivity and 
that my interests lie in the relationships between 
existing productivity measures and soil parruneters. I 
also assume that tl1ese variables can be studied with 
multiple regression analysis. 

In the multiple regression analysis portion of 
the model building methodology, a single independent 
variable value for each soil parameter was generated by 
applying a weighting formula (Equation 1 in Figure 1) 
suggested by Doll and Wollenhaupt (1985), where tl1e 
soil parameters in the first foot of a soil profile 
contribute 40'7c of a plant's vegetation production, tl1e 
second foot contributes 30'7c, tl1e third foot contributes 
20%,. the. fourth. foot.. contributes 10%, and the 
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[Eq l] 

12 24 36 48 
V=[CE vi)*0.4]+[(L Vi)*0.3]+[(L:(j)*0.2]+[(LvJ*0.1] 

i= 1 i= 13 i=~5 i=j 7 

Where: 
V = Weighted Soil Variable Value 

vi= Value for Soil Variable in One Inch Layer 
of Soil Profile 

i = Soil Layer in Profile 

Figure 1. Weighting equation based upon soil depth. 

remaining layers do not contribute to vegetation 
growth. With this formula, any soil parameter for a 
specific soil profile can be measured on a foot by foot 
basis (even inch by inch) and the investigator can 
generate a single value for each soil profile, such as a 
single weighted pH value or a single weighted bulk 
density value (see Burley and Thomsen 1987). Table 2 
lists the typical soil variables employed by Burley and 
colleagues to generate independent variables. A 
document written by the Soil Survey Division Staff 
(1993) describe current methods to measure these 
variables. 

It is also important to recall that most land-use 
disturbances do not typically affect some plant growth 
variables, such as climate. Instead, disturbances 
associated with surface mining activities usually affect 
tl1e soil. Thus for effective reclamation, a reclamation 
success predictor such as an equation should focus upon 
the environmental feature that has been disturbed, tl1e 
soil. Some investigators and reviewers of vegetation 
productivity papers have confused "real time crop-yield 
indexes" with reclamation productivity equations. 
While real time crop-yield equations can compute the 
predicted level of vegetation production for a particular 
year under specific field conditions experienced over 
the growing season, a reclamation productivity equation 
predicts the average expected yield across many years 
of cultivation. This average yield is produced by 
employing crop yield values tl1at were measured over 
many years including drought years, wet years, warm 
growing seasons, and cold growing seasons. This 
averaging effect thereby negates the yearly variances 
upon crop yields produced by climate, allowing an 
investigator to study more closely the influences of 
soils upon vegetation growth over many growing 
seasons. 

Burley et al. (1989) applied the multiple 
regression analysis statistical approach to produce a 



Table 2. Main effect independent variables and units of measurement from the U.S. Soil Conservation Service 
(Jacobson 1982 and U.S. Department of Agriculture 1951). 

Abbreviation Factor Unit of Measurement 

FR 
CL 
BD 
HC 
PH 
EC 
OM 
AW 

% Rock Fragments 
%Clay 

Proportion by weight of particles> 7 .62 cm 
Proportion by weight 

Bulk Density 
Hydraulic Conductivity 
Soil Reaction 

Moist Bulk Density g/cm cubed 
Inches/hour (1 inch= 2.54 cm) 
pH 

Electrical Conductivity 
% Organic Matter 
Available Water Holding 

Mmhos/cm 
Proportion by weight 
Inches/inch, cm/cm 

TP 
Capacity 

Topographic Position Scale O to 5 Where: 
O=Low (Standing Water) 
2.5=Mid-slope 
5=High (Ridge Lines) 

SL % Slope (Rise/Run)*lOO 

productivity equation for seven agricultural crops: 
spring wheat, barley, oats, soybeans, sunflowers, 
sugarbeets, and grasses/legumes. The database for this 
investigation was the Clay County soil survey 
(Jacobson 1982). The result was a reclamation 
productivity equation with a coefficient of multiple 
determination R2 = 0.740. In other words, the 
regressors explain 74% of the sum of squares variation 
in the regression model. This equation did not consider 
woody plants and thus is not an all inclusive vegetation 
productivity model. Since reclamation often includes 
woody vegetation for the development of housing or 
commercial/industrial sites, wildlife habitat, agricultural 
shelterbelts, and forestry post-mining land-use 
applications, the development of a productivity model 
which includes woody plants would be more 
universally applicable in reclamation planning and 
design, including the development of prime fannland 
where woody plants composed of shelterbelts and 
windrows can be intricate components of an 
agricultural landscape. An equation developed by 
Burley (1991) using Burley and Thomsen's (1987) 
methodology, is presented as the best universal 
reclamation equation, because it was suitable to a !age 
number of vegetation types. R2 for this equation is 
0.795, explaining approximately 80% in the sum of 
squares variation for vegetation from the regression 
model. Other equations reported include a Clay 
County, Minnesota sugar beet (Beta vu/garis L.) 
equation (Burley 1990), two equations for Polk County, 
Florida (Burley and Bauer 1993), a two county equation 
in the Red River Valley of the North (Burley 1995a), 
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and an equation for Oliver County, North Dakota 
(Burley et al. 1996). Burley (1992) presented a series 
of issues associated with these equations that may merit 
further investigation. 

In contrast to the approach developed by 
Burley and Thomsen (1987), an alternative productivity 
index has been applied by several investigators. This 
approach is termed the "sufficiency approach" and 
follows more closely the work of Neill (1979) and 
Pierce et al. (1983). Huddleston (1984) and Henderson 
et al. (1990) review the formative development of this 
approach. With this approach, single independent 
variable models are developed to predict soil vegetation 
productivity. The single variable models have some 
degree of statistical reliance and may be normalized as 
illustrated by Wollenhaupt (1985). However, each 
variable is then combined into a full order interaction 
term where each independent variable is multiplied 
together as a group and may be corrected with U1e 
geometrical mean (Gale 1987). Several investigators 
have reported experiments wiU1 these full interaction 
term sufficiency equations (Barnhisel and Hower 1994, 
Burger et al. 1994, Barnhisel et al. 1992, Hrunmer 
1992, and Gale er al. 1991). My criticism of this 
approach is that the equations are heuristically derived 
and the functions are not statistically validated ru1d are 
therefore less rigorous. It is not surprising to n1c that 
efforts to corroborate equations based upon this 
methodology have met with mixed results. The 
research conducted wiU1 this heuristic approach has 
several limitations. First, the variables presented in tlle 



equations may potentially be highly over specified as 
investigators have not demonstrated the contribution of 
each variable within the equation and have not followed 
searching procedures associated with regression 
modeling. Investigators have not accomplished 
sufficient equation sifting to eliminate linear models, 
squared terms, second-order interaction terms, or any 
other equation configuration. In my opinion, 
investigators have prematurely jumped to full 
interaction tenns and geometric means. Second, U1e 
soils employed in the models are often restricted in 
external validity applications, meaning that significant 
results may be limited to a small set of soils studied, 
sometimes only two or three soil types. The data sets 
are not broad and Ums are not applicable to many soil 
types. Third the vegetation types studied often consist 
of one dependent variable type, meaning the reported 
results are actually only applicable to the crop studied, 
such as com or Eastern white pine. These three issues 
are my current reservations about this heuristic 
approach. 

The sufficiency approach and the multiple 
regression modeling approach are two current 
vegetation productivity approaches. Regardless of the 
shortcomings for either approach they are models that 
may merit potential use in landscape planning. 
Numerous states require quantitative reclamation 
assessment procedures (primarily for coal surface 
mining reclamation on prime farmlands), suggesting 
that soil productivity equations are potentially 
compatible witl1 these quantitative assessment demands 
and could make a contribution in evaluating the post-
disturbance soil environment. Burley and Thomsen 
(1990) have described the application of a soil 
productivity equation for reclaiming surface mines. 
The application illustrates how these equations may be 
used to interpret landscape reconstruction 
configurations and how to evaluate the effectiveness of 
various reclamation treatments. 

Discussion 

The Dependent Variables 

The field data required to conduct the analysis 
are extensive. All crops and woody plants of interest 
should be grown on all soil profiles of interest for a 
period of approximn:ely 10 years to gain a perspective 
of vegetation performance on soils across climate 
variability. The time period should include dry years, 
wet years, and average moisture years. For any 
individual investigator, this type of data set would be 

expensive and time consuming to generate; however, 
the United States Soil Conservation Service (SCS) has 
conducted similar work for a fair number of counties in 
the United States of America and can provide a 
substantial portion of the database for investigators 
interested in developing a vegetation productivity 
equation for their region. Since the SCS operates under 
a county administrative structure, the data sets are 
naturally organized by county. These data sets are 
derived from soils on non-mined land. Ideally, a 
investigator should include results from reclaimed soils 
also. Neverthelss, I am somewhat disappointed in the 
conviction expressed privately by some colleagues that 
a statistical equation derived from soils not disturbed by 
mining is not valid for reclaimed soils, especially when 
many of these soils formed within the last 12,000 years, 
deposited by glacial and related surficial activity. 
Consequently, the soils that Burley and colleagues have 
used are relatively new and originated from relatively 
freshly disturbed materials. In addition, many of these 
soils are highly disturbed due to recurring fluvial 
processes, wind erosion, deep tilling, and soil 
amendments. Thus, these soils are not necessarily 
undisturbed material weathering in one location for 
millions of years, such as the soils that may be found in 
the tropics. Compared to millions of years, 12,000 
years is a rather short time span, meaning the glacially 
deposited soils may have much in common with 
reclaimed surface mine soils. Concurrently, other than 
variations in physical parameters such as bulk density 
and chemical parameters such as nitrogen levels, no 
investigator has presented any information to suggest 
U1at reclaimed soils are intrinsically any different than 
pre-mine soils. No investigator has suggested that 
unmined versus mined soils should be a qualitative 
independent regression variable. If a reclaimed surface 
mine soil originated from substrate within the bounds of 
the soils studied to develop a soil productivity equation, 
and if the mine soil is within the physical and chemical 
bounds of soils studied to develop the soil productivity 
equation, then in theory, the soil productivity equation 
based upon non-reclaimed soils should be applicable to 
the reclaimed surface mine soil. The work of Burley et 
al. (1996) suggests Uiat a such an equation may be able 
to predict productivity on reclaimed soils. Unless an 
investigator can find U1e physical or chemical variable 
that indicates reclaimed soils are substantially differen~ 
I will maintain there is no fundamental difference. In 
fact, within U1e horticulture and construction industry, 
soils are rebuilt everyday from highly disturbed areas 
to support turf growth, wood plants, and vegetable 
gardens. If these reconstructed soils were really any 
different from what we know and apply from non-
mined soils, then theoretically, landscape construction 
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activities to build soils for lawns and gardens should 
not be successful. However, careful soil profile 
development on construction sites results in successful 
soil conditions for plant growth. Unless the reclaimed 
soils generate unsuspected toxic conditions such as high 
selenium values, surface mine soils are really no 
different than the collective properties of non-mined 
soils. For example, in the study areas I have examined, 
I have found dense clays, acidic clays, alkaline clays, 
clays on slopes, clays in wetlands, permeable clays, 
deep clays, and shallow clays, replicating almost any 
non-toxic soil condition found on reclaimed clay soils. 
This broad variability of the data set allows reclaimed 
soils with properties that fit within the parameter 
bounds of this data set to estimate vegetation 
performance. I would suggest that those studies that 
have been unsuccessful at predicting vegetation 
productivity have either been working with heuristic 
equations or have not generated a data set with 
substantial breadth across many years with many soil 
types and many vegetation types to develop statistically 
predictive results. 

In my studies, crop harvest data and woody 
plant growth rates are the typical dependent variables 
employed in a vegetation productivity equation study. 
Crop harvest data may be in bushels per acre, tons per 
acre, pounds per acre or any other quantitative harvest 
value typical for the crop of interest. The woody plant 
growth rates have been presented by the SCS in feet per 
years of growth, although other forest measurements or 
horticultural vegetation growth rates or plant volumes 
could potentially be employed. In addition, the crop 
logical types do not have to be consistent. For example, 
a woody crop species and a mixed crop such as a 
grasses and legume mix can be employed in the study. 
The analysis will indicate the statistical relationship 
between the various vegetation types. This is a difficult 
concept for some investigators to intellectually grasp 
because apples and oranges plus many other types of 
numerical information can actually be compared and 
combined. Different units of measure across crop types 
are not necessarily an issue in vegetation productivity 
equation modeling, because each vegetation type is 
standardized to a mean of zero and a variance of I. 
Then the various crop types and woody plants are 
examined with PCA. This statistical treatment allows 
the investigator to determine the number of dimensions 
necessary to explain the variance across all vegetation 
types. Ideally, all of the crops of interest covary 
together and can be combined into one dimension; 
otherwise an investigator may have to develop an 
equation for each significant dimension indicated in 
PCA. In other words, PCA is a data reduction tool tl1at 
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may allow an investigator to determine whether com, 
soybeans, wheat and Fraxinus pennsylvanica can be 
combined together or must be analyzed separately. 
This is an important issue. If all vegetation types do not 
covary in productivity, then the investigator must 
develop a large number of individually tailored 
vegetation productivity equations and the reclamation 
specialist may reclaim a landscape suitable for one crop 
but not suitable for another, thereby excluding future 
production options for the farmer. If the crops do 
covary, a universal vegetation productivity equation 
may be possible for the study site. 

PCA results typically begin wit11 presentation 
of an eigenvalue for each dimension in the data set. 
The largest number of dimensions is equal to the 
number of variables present in the data set. For 
example if three crop types are presented for PCA, Oien 
the largest number of dimensions is three. This 
approach is extremely useful for a large number of 
variables, because the mathematics employed in the 
technique can examine a data set in a multidimensional 
space greater than three dimensions. Until the 
development of the computer, PCA was often limited to 
three dimensions as the matrix algebra required to 
compute the eigenvalues was difficult to compute by 
hand. The impor~~nt feature of the eigenvalue is that 
each dimension is orthogonal to every other dimension, 
meaning that the information associated with each 
eigenvalue is independent of every otl1er dimension. 
PCA assumes that the latent roots of the data set are 
definite and real and the data set is composed of 
multivariate-normal variables. 

The largest eigenvalue is presented as tl1e first 
eigenvalue in PCA. With standardized variables, tl1e 
eigenvalue can be no larger than the sum of tl1e 
variables under study. For example if five crop types 
are being studied, the largest eigenvalue can be no 
greater than 5.0. In addition, the sum of all the 
eigenvalues can be no greater than 5.0. This means t11at 
if the largest eigenvalue is 4.8, the sum of the remaining 
eigenvalues must be equal to 0.2. The proportion of the 
sum for any combination of eigenvalues indicates tl1e 
amount of variance explained by those eigenvalues. 
Suppose two eigenvalues from standardized variables 
sum to 3.0 and there are four variables in the analysis. 
These two eigenvalues represent 75 percent of t11e 
variance in the data set. 

Eigenvalues greater than 1.0 originating from 
standardized variables are considered to represent 
significant di1nensions. The significant di1nensions arc 
then inspected by examining the eigenvector 



coefficients. Each variable in the analysis contains an 
eigenvector coefficient associated witl1 each eigenvalue. 
The eigenvector coefficient indicates the strength of 
association the variable has with the eigenvalue. In 
vegetation productivity analysis studies, the investigator 
is interested in which variables are associated with 
which dimensions. Burley et al. (1989) discovered that 
crop variables in their study covaried together and that 
the eigenvector coefficients were relatively equitable 
across the first eigenvalue. Thus Burley et al. (1989) 
were able to develop a linear equation to compute the 
generation of one combined plant growth productivity 
value per observation case. The eigenvector 
coefficients indicate the weighting of each crop variable 
for a specific dimension and range in value from 1.0 to 
-1.0. The crop value multiplied by the weighting 
coefficient and then summed with the results from the 
other crops f01ms a linear combination equation to 
build a combined vegetation productivity value for each 
observation case. Consequently, an investigator may be 
able to build a data set containing one dependent 
variable per observation case from a set of many 
dependent variables. 

The Independent Variables 

The independent variables are comprised of 
soil characteristics from each soil profile of interest. A 
major issue associated with soil characteristics is the 
variability of any one soil parameter within any soil 
profile. Where should the investigator measure soil 
reaction? Doll and Wollenhaupt (1985) suggest that 
any soil parameter should be measured through the first 
four feet of the profile and weighted according to the 
equation identified in Equation 1. While some 
researchers may question the accuracy of tl1e weighting 
formula, this formula represents the current 
understanding and state-of-the-art of profile 
contribution in vegetation growth, and therefore this is 
the weighting equation employed in my work. 

Analysis 

Once the soil profile weighting formula has 
been employed and the dependent variables have been 
constructed, the data set is ready for regression 
screening. In SAS, regression screening can be 
accomplished with the RSREG procedure. This 
procedure examines main effect, squared terms, and 
two variable interaction tenns for association with the 
dependent variable. The most promising variables can 
then be entered into a regression stepwise procedure to 
evaluate various combinations of regressors. 

795 

The Maximum-Rsquared improvement 
technique has been detennined to be the best stepwise 
selection procedure (SAS 1982). The investigator must 
then examine the results of the stepwise procedure to 
assess which equation is the best from those presented. 
Typically the investigator will examine the multiple 
coefficient of determination, preferring larger values 
which explain a larger percentage of the variance in the 
data set. Values near 0.4 are considered weak and 
values near 0.9 are considered strong. In addition, the 
investigator will examine the p-value for the overall 
regression and the p-value for each regressor. I 
recommend that one examine p-values that originate 
from Type II Sum of Squares, a technique which 
computes the p-value for the regressor assuming that all 
other regressors are already in the equation. This is a 
conservative approach to determining p-values and is 
consistent with not overestimating the p-value's 
significance. P-values less than or equal to 0.05 are 
considered statistically significant. P-values less than 
or equal to 0.01 are considered highly significant. 
Therefore, the investigator is searching for an equation 
which has at least significant p-values and explains as 
much of the data set's variance as possible. 
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Figure 2. Plot of regressors and C-plot values for 
equations presented by Burley (1995b). 

However, the investigator must be concerned 
about over specifying and multicollinearity issues 
associated with regression modeling. One approach in 
evaluating various equations is to prepare a C-plot of 
the equations, where the number of regressors are 
plotted against the C-plot value (Younger 1979). The 
equations above the 45 degree line are considered 
equations which are not over specified. Equations that 
approach the 45 degree line witl1out crossing into the 
lower portion of the quadrant are preferred over 



equations distant from the 45 degree line (Figure 2). 
Those equations which are further from the origin and 
along the 45 degree line are preferred over equations 
close to the origin. This technique can remove much of 
the collinearity problems inherent in regression 
modeling. One can also conduct collinearity 
diagnostics to determine the collinearity associated with 
any regression equation (SAS Institute 1982). The 
diagnostic procedure produces a condition index 
nmnber indicating the degree of collinearity associated 
with dimensions of a regression equation. A condition 
index of less than 10 is considered to indicate relatively 
little or no collinearity (Rawlings 1988). A value 
greater than 10 indicates weak collinearity. A condition 
index nmnber between 30 to 100 indicates moderate to 
strong collinearity. Values above 100 indicate serious 
collinearity problems. With each condition index, 
weighting coefficients indicate the level of association 
for regressor variables. Regressors containing 
coefficients approaching 1.0 are strongly associated 
with that particular dimension. More than one 
regressor with substantial values for a single condition 
index identifies the potential collinear variables. 

[Eq. 2] 

Pseudo-Value = k * (parameter estimate calculated 
from the whole sample) 

- (k-1 )*(parameter estimate calculated from 
the group with the j sample removed) 

Where: k = total number of observation cases 

Figure 3. Nonparametric pseudo value jackknife 
equation. 

[Eq. 3] 

Standard Error= 

(Variance of the Pseudo-values/(k-1))0.5 

Where: k = total nmnber of observation cases 

Figure 4. Nonparametric standard error estimate 
equation for jackknife procedure. 

Analysis of the Analysis 

There are several methods to evaluate the 
estimates of parameters and validity of a particular 
regression equation. One method is the jackknife 
approach (Efron 1982). With this technique a 
nonparametric statistic is produced for each regression 

parameter by applying Equation 2 in Figure 3. The 
variance for this sampling procedure is employed to 
calculate the standard error associated with the 
estimates of each parameter (Equation 3 in Figure 4, 
Mathsoft 1988). 

In contrast to the jackknife approach, the 
bootstrap technique samples the data set with 
replacement to build a larger observational set to 
compute parameter estimates (Mathsoft 1988 and Efron 
1982). For bootstrap analysis, the standard deviations 
of the coefficient estimates are the standard error 
estimates for the coefficients. In otlier words, an 
estimated distribution of the coefficients can be 
calculated. Wide distributions indicate unstable 
coefficients and narrow distributions indicate relatively 
stable coefficients. 

Anot11er procedure which can be employed to 
study the applicability of a regression equation is the 
subsampling procedure, where a portion of the data set 
is removed from the equation development process and 
then employed later to compare the results from the 
equation with the subsample. 

In addition to the collinearity diagnostics, 
jackknife techniques, bootstrap techniques, and 
subsampling procedures, one can inspect the plots of 
the residuals associated with a specific regression 
equation. The plots can identify regression assumption 
violations concerning constant variance and histogram 
plots can identify violations concerning t11e nonnality 
of the residuals. 

Finally, selected vegetation productivity 
equations developed with the procedures described by 
Burley and Thomsen (1987) should be assessed with 
data sets from reclaimed soils. Considering the number 
of reclamation research centers in North America, one 
might expect t11at suitable data sets exist for conducting 
a reclaimed soil investigation. However, these potential 
data sets often do not contain observations according to 
depth, nor do they contain all of t11e desired soil 
variables needed by the developed equation. While 
equations derived from non-mined soils are certainly 
possible to construct, the methodology described in this 
paper is directly applicable to unreclaimed data sets 
also, providing the data set is comprised of all 
vegetation types across all disturbed soil types. 
However, it appears that currently, no reclamation 
center or reclamation investigator has such a large and 
extensive data set. 
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Concluding Remarks 

This technique represents the basic approach I 
have folllowed in developing vegetation productivity 
equations and presents a few more assessment 
procedures not initially described by Burley and 
Thomsen (1987). It is my belief that investigators 
across the globe and especially in North America will 
employ the methodology that I have described in this 
paper and build regionally specific equations to study 
the reconstruction of soils to support plant growth .. 
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