ESTABLISHMENT OF FOUR SPECIES OF NATIVE HARDWOODS ON RECLAIMED MINED LANDS IN PENNSYLVANIA¹

by

Brian E. Washburn, H. Glenn Hughes, and Gerald L. Storm²

Native hardwoods are seldom used in mined Abstract. land reclamation in Pennsylvania due to a variety of ecological factors, such as competition with herbaceous We evaluated the first year survival of 4 plants. species of native hardwood seedlings planted into low and high competition areas on 6 mined sites, 3 each in 1991 and 1992, in northcentral Pennsylvania. The herbaceous vegetation planted consisted of K-31 tall fescue or perennial ryegrass, birdsfoot trefoil, red clover, and white clover. The tree species were black locust, quaking aspen, red maple, and red oak. Measurements of herbaceous ground cover and seedling survival were taken at the end of 1 growing season. Herbaceous ground cover was less in low than in high competition areas on 5 of 6 Survival of all 4 species of seedlings study sites. planted in 1991 had higher survival in low compared to high competition areas, whereas only red maple and red oak seedlings planted in 1992 had higher survival in low Black locust and quaking aspen had competition areas. highest survival for combined low and hiqh the competition areas, whereas red oak had the lowest survival. Red maple survival was intermediate. Climatic conditions may have influenced survival of seedlings in 1991 and 1992. Initial results indicated that reducing amount of herbaceous cover increased seedling the survival after 1 growing season.

Additional key words: Competition, hardwoods, reforestation

1 Paper presented at the 1993 American Society for Surface Mining and Reclamation Meeting, Spokane, WA, May 16-19, 1993.

2 B.E. Washburn is Graduate Research Assistant, School of Forest Resources, The Pennsylvania State University, University Park, PA 16802; H.G. Hughes is Associate Professor of Wildlife Technology, The Pennsylvania State University, DuBois, PA 15801; G.L. Storm is Adjunct Associate, Professor of Wildlife Management, PA Coop. Fish. & Wildl. Res. Unit, School of Forest Resources, The Pennsylvania State University, University Park, PA.

This project was supported by federal funds from the U.S. Bureau of Mines and the National Mine Land Reclamation Center under Cooperative Agreement CO388026.

Publication in this proceedings does not preclude authors from publishing their manuscripts, whole or in part, in other publication outlets.

Proceedings America Society of Mining and Reclamation, 1993 pp 724-731 DOI: 10.21000/JASMR93020724 https://doi.org/10.21000/JASMR93010724

Introduction

Revegetation of mined currently focuses lands on establishing dense herbaceous cover to stabilize soil and control erosion and sedimentation. However, previous research has shown dense herbaceous cover mav reduce the survival and growth of tree seedlings (Ashby 1990, Ashby et al. 1988, Davidson et al. 1984, Hughes and Garthe 1989, Smith 1980, Strock 1980, Vogel 1980). Wade (1989) found that grasses used in reclamation are very competitive and impede the invasion of native herbaceous and tree species. Woods et al. (1978) found that grasses caused mortality in pitch pine (<u>Pinus rigida</u>) and Virginia virginiana) pine (Pinus seedlings planted on reclaimed mined lands.

Recontouring, liming and fertilizing, seeding with grasses and legumes, and mulching are cost-effective to satisfy ways current regulatory requirements and recover bond monies. Grasses and legumes are commonly used in reclamation because of their vigor, availability of seed sources, and reported success in erosion control (Ashby et al. 1988).

A variety of tree species have been used to reforest mined lands for forest and wildlife management in Pennsylvania. Tree species typically used are exotics such Japanese larch (Larix as Black japonica). locust (Robinia pseudoacacia) and red pine (Pinus resinosa) are also used, but Pennsylvania is on the northern edge of the black

locust range and the southern end of the red pine range (Ashby et al. 1985, Kolar and Ashby 1978). Native hardwoods are seldom used in reclamation, marginal and success was reported when they were used (Davidson et al. 1990). то promote the use of native trees reclaimed mine on lands, research is needed to determine how to minimize any adverse effects of various ecological factors on tree growth and survival. The objective of our study was to determine and compare the survival and growth 4 species of of native hardwoods planted into 2 levels of herbaceous cover and 2 levels of potential deer browsing.

Methods

Six study sites, 3 each in 1991 and 1992, were established in the bituminous coal region of western Pennsylvania. At each site, we created 2 levels (low and high) of herbaceous seeding. After the first growing season, deer exclosures were constructed around onehalf of each site, resulting in a randomized split-split plot design with 2 replications per site. Herbaceous mixtures were seeded in April and May of 1991 and 1992. High competition areas were planted using a seed drill with no ports plugged so that the area was completely (100%) seeded. Low competition areas were planted using a seed drill with 1/2 of the ports plugged so that the area of seeded consisted and unseeded strips, with 50% of being the area seeded. Herbaceous seed mixtures consisted of K-31 tall fescue arundinacea) (Festuca or

perennial ryegrass (Lolium trefoil birdsfoot perenne), and (Lotus corniculatus), (Trifolium clovers spp.). Herbaceous communities included plant species in the seeded other seeds mixture, contaminating the mixture, and species invading from areas adjacent to the study sites.

herbaceous measured We communities quantify to differences in plant development in the low and high competition areas; sites planted in 1991 were monitored during August and September 1991 and sites planted in 1992 were measured during July and August 1992. The percent cover of each species and all species combined was estimated by locating and sampling in 0.5-m x 1.0-m plots. One hundred and were twenty-eight plots measured in the high competition condition on each study site. Two hundred and fifty-six plots, 128 each in the seeded and unseeded strips, measured in the were low competition condition on each study site.

One-year-old seedlings of 4 species were handplanted in each high competition area and in unseeded strips of each low competition area in May and June of 1991 and 1992. Species planted were red oak (<u>Quercus</u> <u>rubra</u>), red maple (<u>Acer</u> <u>rubrum</u>), quaking aspen (<u>Populus</u> tremuloides), and black locust.

We examined each seedling and recorded whether it was alive or dead after 1 growing season. Survival was determined in September of 1991 on sites planted in 1991 and in September of 1992 on sites planted in 1992. Because deer exclosures were not completed until after survival measurements were taken, an evaluation of the effects of deer on seedling survival is not included in this report.

Results and Discussion

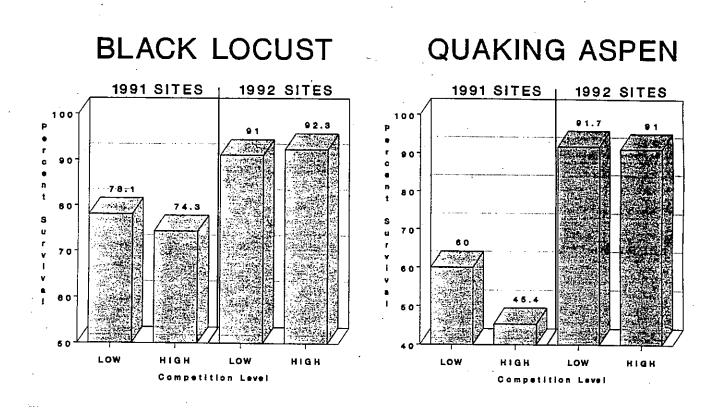
Herbaceous ground cover in the unseeded portion of the low competition areas was lower than in high competition areas on 5 of 6 study sites (Table The one exception was at 1). Harmony the site where herbaceous cover in low competition areas was the same as in high competition areas. This exception may be due to greater invasion of plants from surrounding areas as compared the other study sites. to Herbaceous ground cover was markedly higher at all sites in 1992 compared to 1991 (Table 1).

Survival of all 4 species of hardwoods was higher in low competition areas compared to high competition areas after 1 growing at sites season established in 1991 (Figure 1). In 1992, survival of red maple and red oak was also higher in the low competition areas; survival of black locust and guaking aspen, however, was the for the low and high same competition areas. Quaking aspen planted in 1991 and red oak planted in 1991 and 1992 exhibited the greatest difference in survival between the low and high competition areas (Figure 1).

Seedling survival, based on the combined data for low and high competition areas, indicated that over 74% of the black locust were alive after 1

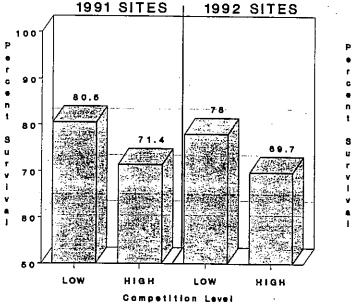
	COMPETITION			
	LOW			HIGH
	UNSEEDED STRIPS	SEEDED STRIPS	SEEDED & UNSEEDED	
1991 SITES			· · · · · · · · · · · · · · · · · · ·	
Kylertown I	7	28	18	20
Brandy Camp	13	44	29	32
Harmony	24	45 `	35	24
1992 SITES				
Kylertown II	41	72	57	75
Brockport	46	79	63	75
Clearfield	19	79	49	71

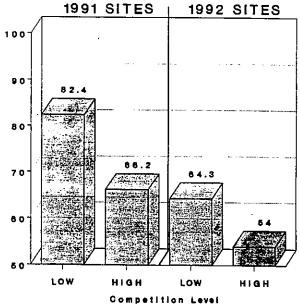
Table 1. Average percent herbaceous cover in low and high competition areas after 1 growing season on 3 mined sites reclaimed in 1991 and 3 sites reclaimed in 1992.


growing season (Figure 1). Survival of quaking aspen exceeded 90% in 1992, compared to only 53% in 1991. Survival of red oak seedlings was lower than that of other species, whereas survival of red maple intermediate among was the other species.

Differences in survival of seedlings between 1991 and 1992 may have been due to differences in climatic conditions between years. Air temperature was above normal precipitation was below and normal during 1991 (Figures 2 and 3). Cooler air temperatures persisted throughout 1992 and there was more precipitation in July, August, and September of 1992 (Figures 2 and 3) than in 1991; these conditions may have provided better growing conditions during 1992.

Because of a unique life history strategy, each tree species may have responded differently to herbaceous cover, climatic conditions, or a combination of both factors. Black locust and quaking aspen are early successional species that are shade intolerant and grow best on moist, rich soils (Harlow et al. 1979). The increased precipitation and cooler temperatures in 1992 may have created more favorable growing conditions for these species and increased their survival during 1992.


Red oak is intermediate in shade tolerance and grows best on fine-textured, well-watered soils (Harlow et al. 1979). The course structure and poor water-holding capacity of mine soils may create conditions less than favorable for red oak, resulting in relative poor survival. Red maple is


Figure 1. Average first year survival of 4 species of native hardwoods planted in 2 levels of herbaceous cover at 3 study sites established in 1991 and at 3 sites established in 1992 in northcentral Pennsylvania.

RED MAPLE

RED OAK

728

Figure 2. Average monthly air temperature for March thru September, 1991 and 1992, and normal temperatures for the 6 study areas in northcentral Pennsylvania.

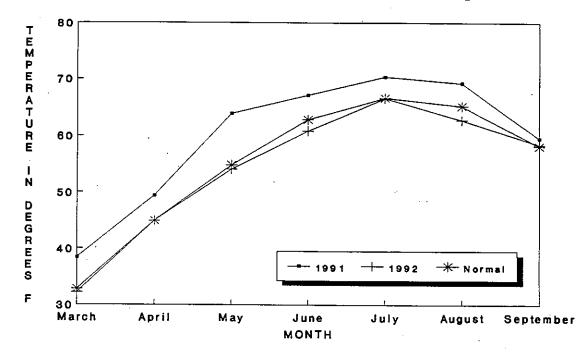
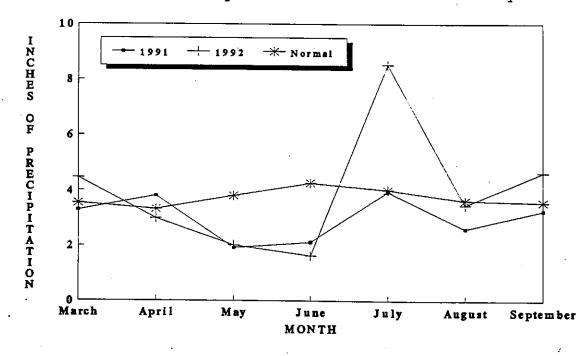



Figure 3. Average total monthly precipitation in inches for March thru September, 1991 and 1992, and normal precipitation for the 6 study areas in northcentral Pennsylvania.

729

intermediate with respect to shade tolerance and grows in a variety of moisture regimes (Harlow et al. 1979). Therefore, the intermediate survival we observed seems consistent with what would be expected from this species.

Conclusions

native of Survival hardwood seedlings was higher in areas with less competition from herbaceous cover; red . maple and red oak in particular seemed to benefit from the reduction in herbaceous competition. Black locust and quaking aspen survival was relatively hiqh for the low and high combined competition areas. Survival of black locust and quaking aspen was over 90% in 1992 when the ambient temperature was cooler and precipitation was higher compared to 1991.

Our study indicated that for procedures reducing herbaceous competition during efforts reclamation may be useful to promote survival and growth of native hardwoods planted on reclaimed mined Furthermore, lands. we recognize that differences in survival among hardwood seedlings is also related to the life history strategy of species, to each and differences among species in their response to ecological conditions.

Literature Cited

Ashby, W. C. 1990. Factors limiting tree growth in southern Illinois under SMRCA. p. 287-294. <u>In</u>

http://dx.doi.org/10.21000/JASMR90010287

Proceedings of the 1990 Mining and Reclamation Conference and Exhibition. 2 Vols. West Virginia University, Morgantown, WV. 615 p.

- -, M. _ R. Norland, and D. A. Kost. 1988. Establishment of trees in herbaceous cover on graded Lenzburg minesoil. p. 48-53 In Mine drainage and surface mine reclamation. Volume Ι: Mine reclamation, abandoned mine lands and policy issues. USDI Bureau of Mines Info. Circ. 9184.

http://dx.doi.org/10.21000/JASMR88020048 ----, W. G. Vogel, and N.

- F. Rogers. 1985. Black locust in the reclamation equation. U.S.D.A. Forest Service Exp. Sta. Gen. Tech. Report NE-105. 12 p.
- Davidson, W. H., R. J. Hutnik, and D. E. Parr. 1984. Reforestation of mined land in the Northeastern and North-central U.S.. North. J. Appl. For. 1:7-11.
- - -, A. W. Freeland, and B. Elison. 1990. Successful oak establishment on a reclaimed surface mine. p. 295-297 <u>In</u> Proceedings of the 1990 Mining and Reclamation Conference and Exhibition. 2 Vols. West Virginia University, Morgantown, WV. 615 p.
- Harlow, W. M., W. S. Harrar, and F. M. White. 1979. Textbook of dendrology. Sixth edition. McGraw-Hill, Inc. New York, NY. 510 p.
- Hughes, H. G. and J. W. Garthe. 1989. Direct seeding of black locust reduces herbaceous competition. Landscape

and Urban Planning 17:73-75. http://dx.doi.org/10.1016/0169-2046(89)90068-6 Kolar, C. and w. C. Asnby. 1978. Potential for woodland habitat from surface-mine tree plantings. Trans. N. A. Nat. Resour. Conf. 43:93-115. Smith, W. D. 1980. Has anyone noticed that trees are not being planted any longer? p. 53-55 In Trees for reclamation. U.S.D.A. Forest Service Gen. Tech. Rep. NE-61. Strock, G. N. 1980. Revegetation of surfacemined lands in Pennsylvania. p. 57-59 In Trees for reclamation. U.S.D.A. Forest Service Gen. Tech. Rep. NE-61. Vogel, W. G. 1980. Revegetating surfacemined lands with herbaceous and woody species together. p. 117-126. In Trees for reclamation. U.S.D.A. Forest Service Gen. Tech. Rep. NE-61. Wade, G. L. 1989. Grass competition and establishment of native species from forest soil seed banks. Landscape and Urban Planning 17:135-149. 149. http://dx.doi.org/10.1016/0169-2046(89)90022-4 Woods, F. W., K. L. nay, and G. H. Irwin. 1978. Minisite preparation for reforestation of stripmine lands. p. 306-310 In Proceedings of a symposium: Surface mining and fish/wildlife needs in the eastern United States. OBS/FWS 78/81. 386 p.