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Abstract. This investigation examined the potential to build neo-sol vegetation 
productivity equations in Polk County, Florida for the reclamation of phosphate mining 
sites arid to restore native vegetation associations impacted by landscape disturbance. 
The vegetation types examined in the study include: Watermelon (Citrullus lanatus), 
Cucumber (Cucumis sativus), Sweet Orange (Citrus sinensis), Grapefruit (Citrus x 
paradisi), Bahia Grass (Paspalum notatum), Grass-Clover, Longleaf Pine (Pinus 
palustris), Slash Pine (Pinus elliottii var. elliottii), South Florida Slash Pine (Pinus 
elliottii var. densa), Live Oak (Quercus virginiana), Turkey Oak (Quercus laevis), 
Sand Post Oak (Quercus margaretta), Cabbage Palm (Sabal palmetto), Bald Cypress 
(Taxodium distichum), Pond Cypress (Taxodium distichum var. nutans), Blackgum 
(Nyssa sylvatica), Red Maple (Acer rubrurn), Sweetbay (Magnolia virginiana), and 
Wetland Range/Grassland. The vegetation types ordinated into two plant associations: 
an upland group and a lowland group. Therefore two equations were developed, an 
upland vegetation equation and a lowland vegetation equation. The upland vegetation 
equation suggested that non-alkaline soils with low hydraulic conductivity rates and 
high clay content were preferred (p < 0.0001 for overall regression, maximum p-value 
= 0.048 for regressors, and adjusted multiple R-squared = 0.595). The upland 
equation contains hydraulic conductivity, percent clay, available water holding 
capacity, topographic position, percent organic matter, bulk density, and pH as s.oil 
parameters. The lowland vegetation equation suggested that higher topographic 
positions were preferred providing the soils were not dense and did not have a high 
clay content (p < 0.0001 for the overall regression, maximum p-value = 0.029 for 
regressors, and adjusted multiple R-squared = 0.646). The lowland equation contains 
topographic position, bulk density, percent organic matter, and percent clay as soil 
parameters. These equations are cursory and represent an initial investigation to apply 
vegetation productivity modeling techniques to a Florida environment. 
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INTRODUCTION 

Reclamation research has led to the 
formative development of empirical prediction 
models to forecast the suitability of 
reconstructed soils (neo-sols) in reclaimed 
surface mine landscapes and other post-
disturbance landscape conditions, for native 
vegetation types and non-native vegetation 
situations. This article describes the current 
body of knowledge associated with neo-sol 
vegetation productivity models and reports the 
results of a study to develop an equation for the 
phosphate mining region in Polk County, 
Florida. While numerous investigators have 
contributed important research findings leading 
towards the development of neo-sol prediction 
equations, Burley and Thomsen_ (1987) 
reported on a methodology suitable for 
generating a neo-sol predictive model. Their 
paper is essential and strongly recommended 
reading in understanding the statistical and 
conceptual procedures for creating a neo-sol 
predictive equation. Based upon this 
methodology, Burley, Thomsen, and Kenkel 
(1989) reported the first application of these 
modeling procedures to create a neo-sol 
predictive equation for reclamation 
applications. Soil factors examined in their 
study include percent organic matter, percent 
slope, percent rock fragments, hydraulic 
conductivity, electrical conductivity, pH, 
topographic position, available water holding 
capacity, bulk density and percent clay. 
Squared terms and two-factor interaction terms 

PLANTS= .6206+ (-1.lSOS*((HC-3.9296)/4.0030)) 

were also examined as possible regressors. 
Presently, three equations have been developed 
and published for one study site, Clay County, 
Minnesota, an Upper Midwest study area. The 
equations include a crop model (equation 1) 
(Burley, Thomsen, and Kenkel 1989), an all 
vegetation model (equation 2) (Burley 1991), 
and a sugar beet model (equation 3) (Burley 
1990), each containing highly specific 
regressors and moderate multiple coefficient of 
determinations (0.63 to 0.79). The equations 
predict soil suitability for the vegetation 
associated with the model. The crops included 
in the crop model and the vegetation model are 
wheat, oats, barley, soybeans, sugar beets, 
sunflowers and grasses/legumes. The trees and 
shrubs included in the vegetation model are 
Siberian Peashrub (Caragana arborescens), 
Common Hackberry ( Ce/tis occidentalis), Red-
twig Dogwood (Cornus sericea), Green Ash 
(Fraxinus pennsylvanica), Eastern Red Cedar 
(Juniperus virginiana), Black Hills Spruce 
(Picea glauca densata), Colorado Spruce 
(Picea pungens), Ponderosa Pine (Pinus 
ponderosa scopulorum), Eastern Cottonwood 
(Populus deltoides), American Plum (Prunus 
americana), Common Chokecherry (Prunus 
virginiana), Weeping White Willow (Salix alba 
tristis), Common Lilac (Syringa vulgaris), and 
Siberian Elm (Ulmus pumila). The sugar beet 
model is pertinent for the crop, sugar beets, 
only. Currently, no other investigators have 
reported a neo-sol model for any other region 
disturbed by surface mining. 

Eq 1 
+ (-0.3575*(((SL-3.0000)/4.6810)**2)) 

Where 
PLANTS 
HC 
SL 
BD 
FR 
EC 
OM 

+ (-1.9375*((BD-1.3584)/0.2644)((FR-0.9075/3.4929)) 
+ (-2.3420*((EC-2.526)/l .0947)((FR-0.9075)/3.4929)) 
+ (l.2424*((0M-3.9512)/0.6638)((EC-2.5269)/l.0947)) 

= 
= 
= 
= 
= 
= 
= 

Predicted Productivity Score 
Hydraulic Conductivity (inches/hour, 1 inch=2.54 cm) 
% Slope 
Moist Bulk Density (g/cm cubed) 
% Rock Fragments (percentage weight of particles > 7 .62 cm) 
Electrical Conductivity (Mmhos/cm) 
% Organic Matter (percentage weight) 
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ALLPLANTS=.8916+(-l.4366*((HC-3.9296)/4.0030)) Eq 2 
+ (-1.1419*((SL-3.0000)/4.6810)((TP-2.575/0.9682) 
+ (-2.3041 *((EC-2.526)/l.0947)((FR-0.9075)/3.4929)) 
+ (-0.5887*((EC-2.526)/l.0947)((CL-22.843/14.3063)) 
+ (-1.9375*((EC-2.526)/1.0947)((BD-1.3584)/0.2644)) 
+ (l .2424*((0M-3.9512)/0.6638)((FR-0.9075)/3.4929)) 

Where 
ALLPLANTS = Predicted Productivity Score 
HC = Hydraulic Conductivity 
SL = % Slope 
TP = Topographic Position 
BO = Moist Bulk Density 
FR = % Rock Fragments 
EC = Electrical Conductivity 
CL. = % Clay 
OM = % Organic Matter 

SBP=-0.342+(0.339*(CL-22.84)/14.3) Eq 3 
+ (0.425*(pH-7 .50)/0.43) 
+ (0.182*((CL-22.84*(CL-22.84)/14.31) 
+ (-0.816*((AW-0.259)/0.69)*((CL-22.84)/14.31)) 
+ (0.363*((pH-7.50)/0.43)*((EC-2.53/1.09))) 

Where 
SBP 
CL 
PH 
AW 
EC 

= 
= 

Sugar Beet Productivity (unitless) 
Percent Clay, by weight 

= pH 
= 
= 

Available Water Holding Capacity, cm cm-1 
Electrical Conductivity, Mmhos cm-I 

While these equations may prove to be 
useful in the reconstruction of post-mining and 
other post-disturbance applications for 
agroecosystems and reconstructed naturalized 
landscapes, Burley (1992) has suggested that 
the empirical equations may currently lack a 
theoretical basis. However, Barnhisel et al 
(1992) describe the development of a soil 
productivity index where they present a crop 
yield conceptual model first presented by 
Kimiry et al (1983). This model suggests that 
the soil environment supports root growth, 
thereby substantially affecting crop yield. 
Nevertheless, no investigator has attached an 
explanative theory to accompany this 
conceptual model. In addition to the lack of 
theory, Burley (1992) notes the equations may 
have coefficient instability (the Beta 
coefficients developed in the regression 
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equations may fluctuate wildly with changes in 
selected soils representing the data set). To 
strengthen the reliability of these equations, 
investigators may wish to conduct Jackknife 
coefficient estimates, Bootstrap coefficient 
estimates, and sub-sampling coefficient 
estimates for the equations .1 The equations 
could be further strengthened by incorporating 
post-mining (or post-disturbance) soil cases 
into the data set or corroborating the equations 
with independent data sets. Investigators may 
wish to include additional variables into the 
equation building process such as a "time" 
variable through a calculus integration 
equation, or other parameters such as 
vegetation toxicity factors; possibly improving 
the general applicability of predictive 
equations. 



unty 

Figure 1. This drawing illustrates the location of 
Polk County, Florida. 

Investigators are now exploring the 
implications and applications of these new 
models. Burley (1988), and Burley and 
Thomsen (1990) have described an approach, 
employing a soil productivity equation for 
reclaiming surface mines in Clay County, 
Minnesota. Currently, Burley is conducting 
related research upon the North Dakota Coal 
Fields. Concurrently, the investigator examined 
the potential to develop an equation for the 
phosphate region in Central Florida. 2 A study 
of the region outside the Upper Midwest 
afforded the opportunity to test the applicability 
of techniques first reported by Burley and 
Thomsen (1987) to other areas where soil 
landscape disturbance is present and where 
there is a concern to reconstruct the landscape. 
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Figure 2. This photograph depicts the condition 
of a Polk County phosphate mining site in 1989. 
The light colored overburden soil material is 
sand. Once mining is complete, the overburden is 
graded to form surfaces suitable for cropland, 
rangeland, woodlots, and wetlands. 

STUDY AREA AND METHOD 

Polk County, Florida (Figure 1) is located 
in a region where extensive phosphate mining 
occurs. Often the surficial material is sandy 
and the water table is near the surface (Ford et 
al 1990). Figure 2 depicts the condition of the 
landscape during the phosphate mining process. 
Before mining, surficial topography is gentle 
and relatively flat, comprised of Entisols and 
Spodosols (Myers and Ewe! 1990). Pine 
forests, watermelon fields, and citrus groves 
reside upon the well drained Entisols. 
Flatwoods, wet and dry prairies, ponds, 
cypress domes, pastures and citrus groves 
reside .upon the Spodosol dominated land-
scape. When phosphate bearing materials 



Figure 3. This photograph (1989) presents a post-mining wetland created in Polk County, Florida. 

are removed during the mining process from a 
. flat low lying Spodosol landscape, the post-
mining landscape can be transformed into a 
wetland condition not suitable for upland 
vegetation and affording opportunities to create 
a variety of wetland types (Figure 3). The 
placement and landscape configuration of 
overburden material is an important form-
g1vmg feature driving the post-mining 
establishment of vegetation. 

Based upon the data supplied by Ford et al 
(1990), the vegetation types applicable for 
study and development of neo-sol equations 
included Watermelon (Citrullus lanatus), 
Cucumber (Cucumis sativus), Sweet Orange 
( Citrus sinensis), Grapefruit ( Citrus x 
paradisi), Bahia Grass (Paspalum notatum), 
Grass-Clover, Longleaf Pine (Pinus palustris), 
Slash Pine (Pinus elliottii), Southern Slash Pine 
(Pinus elliottii var. densa), Live Oak (Quercus 
virginiana), Turkey Oak (Quercus laevis), Post 
Oak (Quercus margaretta), Cabbage Palm 
(Sabal palmetto), Bald Cypress (Taxodium 
distichum), Pond Cypress (Taxodium distichum 
var. nutans), Blackgum (Nyssa sylvatica), Red 
Maple (Acer rubrum), Sweetbay (Magnolia 
virginiana), and Wetland Range Grassland. 

Vegetation productivity values across soil 
types were gathered by Ford et al (1990). 
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These values were measured in units such as 
tons per acre, bushels per acre, or feet per unit 
of time. 

Ford et al (1990) describe the methods 
employed to gather soil profile data and plant 
growth data. These methods follow the U. S. 
Soil Conservation Service (SCS) approach for 
developing county soil survey information. 
Plant growth data are typically a compilation of 
field trials, past yield records, and heuristic 
estimates by seasoned agriculturists (see Burley 
1987). SCS plant growth data sorted by soil 
profile type are considered suitable in some 
states for reference area comparisons. Each 
SCS soil survey is an extensive, professionally 
acquired data source with potential for 
incorporation into ecological modeling 
investigations such as developing agricultural 
productivity equations. 

The procedures employed to develop the 
equation(s) were similar to those techniques 
described by Burley and Thomsen (1987) with 
the following exception: the statistical software 
employed in this study was SYSTAT 
(Wilkinson 1990); while the statistical software 
used by Burley and colleagues was SAS (SAS 
Institute Inc. 1982). Therefore, this change 
precluded the opportunity to use the RSREG 
search procedures (SAS Institute Inc. 1982:91-



HJO). Instead, each main effect, squared term 
and first interaction term were assessed 
individually, one variable at a time, searching 
for the top 20 most likely regressors suitable 
for further analysis. Since SYSTAT has fewer 
regression analysis options, Maximum R-
squared improvement Stepwise analysis (SAS 
Institute Inc. 1982: 102-103) was not possible 
and Forward Stepwise analysis (Wilkinson 
1990: 153), a less desirable analysis procedure, 
was employed. 

In the study, those eigenvalues greater then 
1.0 are considered likely candidates to project a 
linear combination important in predicting 
meaningful environmental relationships 
between the dependent crop/woody vegetation 
variables. The eigenvectors associated with 
each eigenvalue present a numerical linear 
combination of weightings assigned to 
crop/woody plant variables and then employed 
in the regression analysis (see Burley and 
Thomsen 1987). In past studies, only the 
sugar beet model (Burley 1990) generated 
significant results beyond the linear 
combination associated with the first 
eigenvalue. 

The procedures to complete the modeling 
process are complex and lengthy. Burley and 
Thomsen (1987) provide a detailed description 
of the modeling procedures. Investigators are 
en-couraged to examine their document. 

RESULTS 

In an examination of the statistical results, 
the Principal Component Analysis (PCA) illu-
strates the latent structure of the vegetation 
(dependent variables). Table 1 presents the 
eigen- values for the 19 axis PCA. Each 
eigenvalue represents a portion of the variance 
in multi- dimensional space that is orthogonal 
(thus inde-pendent) to all other component axis. 
Axis with large eigenvalues represent 
alignments where the variables express large 
variance along some continuum. In plant 
ecology, these continuums often pertain to 
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Table 1. Eigenvalues for vegetation variables. 

Component 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Eigenvalue 
8.448 
2.278 
2.077 
1.167 
0.933 
0.873 
0.675 
0.549 
0.511 
0.349 
0.294 
0.238 
0.129 
0.105 
0.073 
0.051 
0.024 
0.020 
0.006 

% of Variance 
44.465 
13.042 
10.932 

6.145 
4.908 
4.592 
3.552 
2.891 
2.689 
1.838 
1.548 
1.250 
0.667 
0.550 
0.386 
0.270 
0.125 
0.107 
0.033 

temperature, light, nutrient, or water 
availability dimensions (see Curtis 1959 for 
classic examples of PCA/Factor Analysis 
ordination). In this study, the first four 
eigenvalues are greater then 1. 0 with the first 
component containing 44 % of the variance and 
the second component containing 13 % of the 
variance. Table 2 presents the eigenvectors for 
the first four components. 

Interpreting these eigenvectors can be a 
difficult task because there is really no specific 
procedure to assess the eigenvectors. Notice 
that in the first component there is a group of 
plants positively associated with the component 
and another group negatively associated with 
the component. The positive group consists of 
upland plants and the negative group represents 
wetland vegetation. When the two groups are 
separated and analyzed with PCA,. the upland 
group contains all positive numbers for the first 
component and the lowland group has all 
positive numbers for the first component (see 
Table 3). 



Table 2. Eigenvectors for first four components. 

Variable Component 1 Component2 Component 3 Component 4 
Orange 0.815 -0.003 0.313 -0.171 
Grapefruit 0.823 0.025 0.309 -0.133 
Watermelon 0.462 -0.445 0.434 0.133 
Cucumber 0.204 0.446 -0.131 0.601 
Bahia Grass 0.902 0.222 0.117 0.058 
Grass-Clover 0.444 0.670 -0.152 0.226 
Rangeland Grass -0.433 0.548 0.578 0.123 
Slash Pine 0.827 0.299 0.075 -0.075 
Long Leaf Pine 0.713 0.162 0.124 0.253 
Turkey Oak 0.318 -0.627 0.400 0.272 
Post Oak 0.339 -0.487 0.513 0.258 
Live Oak 0.557 0.063 0.288 -0.596 
Cabbage Palmetto -0.445 0.469 0.188 -0.243 
Pond Cypress -0.824 0.195 0.478 0.019 
Bald Cypress -0.439 -0.280 -0.371 -0.049 
Blackgum -0.873 0.110 0.371 0.020 
Red Maple -0.901 -0.002 0.138 -0.034 
Sweetbay -0.849 0.176 0.461 0.028 
Southern Slash Pine 0.756 0.389 0.094 -0.154 

Table 3. Separated vegetation types with eigenvalues and eigenvectors. 

Upland Group Component 1 Component2 Lowland Group Component 1 Component2 

Eigenvalue 5.530 2.241 Eigenvalue 4.515 1.303 
% Variance Explained 44.081 18.679 % Variance Explained 64.497 18.612 

Orange 0.874 -0.132 Cabbage Palmetto 0.729 0.477 
Grapefruit 0.885 -0.104 Pond Cypress 0.588 0.123 
Watermelon 0.503 -0.584 Bald Cypress 0.953 0.171 
Cucumber 0.233 0.464 Blackgum 0.263 -0.928 
Bahia Grass 0.921 0.160 Red Maple 0.959 -0.079 
Grass-Clover 0.472 0.667 Sweetbay 0.891 -0.393 
Southern Slash Pine 0.815 0.223 Rangeland Grass 0.973 0.089 
Slash Pine 0.849 0.101 
Long Leaf Pine 0.753 -0.752 
Turkey Oak 0.317 -0.679 
Post Oak 0.398 -0.108 
Live Oak 0.628 0.297 

340 



Therefore, the vegetation types were 
divided into two groups for further modeling 
analysis. The eigenvectors of the first 
component for the upland group formed the 
linear combination to generate an upland 
vegetation dependent variable for regression 
study. The eigenvectors of the first component 
for the lowland group formed the linear 
combination to generate a lowland veg-etation 
dependent variable for regression study. 

UPLAND=6381 +(-0.006*HC*HC) 
+ (0.012*CL *CL) 

Where 

+ (220.67l*AW*AW) 
+ (-5.550*HC*AW) 
+ (24.056*TP*AW) 
+ (-0.751*0M*BD) 
+ (-0.141*PH*CL) 
+ (0.038*CL *HC) 

Equation 4 and Table 4 represent the 
results of the upland regression study, 
illustrating the model suited to predict soil 
characteristics pertinent to predict upland 
vegetation growth. Consequently Equation 5 
and Table 5 represent the results of the lowland 
regression study, illustrating the model deemed 
to be the best model to predict soil 
characteristics pertinent to predict lowland 
vegetation growth. 

Eq 4 

UPLAND = Predicted Productivity Score 
HC = Hydraulic Conductivity 
AW = Available Water Holding Capacity 
PH = pH 
TP = Topographic Position 
BD = Moist Bulk Density 
CL = % Clay 
OM = % Organic Matter 

Table 4. Regression statistics for selected upland model. 

N: 54 Multiple r:0.810 Squared Multiple R: 0.656 
Adjusted Squared Multiple R: 0.595 Standard Error of Estimate 3.521 

Variable Coefficient Std Error Std Coef Toi T P(2 Tail) 
Constant 6.381 1.533 0.000 4.161 0.000 
HC*HC -0.006 0.002 -0.276 0.612 -2.472 0.017 
CL*CL 0.012 0.003 1.608 0.037 3.524 0.001 
AW*AW 220.671 62.033 1.091 0.081 3.557 0.001 
HC*AW -5.550 1.661 -0.927 0.099 -3.342 0.002 
TP*AW 24.056 5.998 0.510 0.474 4.011 0.000 
OM*BD -0.751 0.259 -0.661 0.147 -2.895 0.006 
PH*CL -0.141 0.032 -2.221 0.030 -4.401 0.000 
CL*HC 0.038 0.019 0.302 0.346 2.030 0.048 
Analysis of Variance 
Source Sum-of-SquaresDF Mean-Square F-Ratio p 
Regression 1062.959 8 132.870 10.716 0.000 
Residual 557.961 45 12.399 
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LOWLAND= 6.077 + (1.505*TP*TP) 
+(-2.685*TP*BD) 
+ (0.570*TP*OM) 
+ (-0.814*TP*CL) 

Where 

Eq5 

LOWLAND = Predicted Productivity Score 
TP = Topographic Position 
BD = Moist Bulk Density 
PH = % Clay 
OM = % Organic Matter 

Table 5. Regression statistics for selected lowland model. 

N: 54 Multiple R:0.820 Squared Multiple R: 0.672 
Adjusted Squared Multiple R: 0.646 Standard Error of Estimate 2.687 

Variable Coefficient Std Error Std Coef Toi T P(2 Tail) 
Constant 6.077 0.736 0.000 8.260 0.000 
TP*TP 1.505 0:255 1.607 0.090 5.892 0.000 
TP*BD -2.685 1.145 -1.115 0.030 -2.345 0.023 
TP*OM 0.570 0.253 0.227 0.658 2.255 0.029 
TP*PH -0.814 0.310 -1.186 0.033 -2.621 0.012 
Analysis of Variance 
Source Sum-of-Squares DP Mean-Square F-Ratio P 
Regression 726.520 4 181.630 25.154 .000 
Residual 353.819 49 7.221 

DISCUSSION AND CONCLUSION 

Equation Intemretation 

Interpreting the equations is a difficult task. 
Often the interpretations are rather naive. It 
may take decades to fully explore the 
implications of these empirical models. Critics 
of the models may claim that the equations 
provide no new information; conversely, other 
critics claim that the models suggest spurious 
relationships that are not grounded or 
supported by a substantial body of knowledge. 

The results obtained in the study suggest 
that there are two ordinated groups of 
vegetation with a different set of neo-sol 
environmental preferences. In the upland 
group, there appears to a definite preference 
for higher topographic positions that have a 
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higher available water holding capacity and a 
slow hydraulic conductivity rate. The equation 
suggests that for upland vegetation, the 
addition of clay particles may be an important 
soil amendment. In phosphate surface mining 
operations an abundance of clay can be found 
in water filtration/recycling ponds. Clay 
particles that have settled into these ponds may 
be an important post-mining soil asset. 
However, as indicated in the model, clay 
particles that are associated with a high pH or 
in soils with a high bulk density may not be 
beneficial. 

In the lowland vegetation equation, topo-
graphic position is a major constituent of the 
model. As the topographic position in 
elevation increases, the equation suggests that 
the lowland vegetation will prefer less dense 
soils,soils with abundant organic matter and a 

----- ----------
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Figure 4. This plot compares the vegetation productivity scores from the two PCA dimensions. 

low abundance of clay particles." The 
preference for less clay is in contrast to the 
upland model. This study indicates that 
lowland plants may not prefer wetland 
conditions and may actually prefer higher 
topographic positions. In other words, the 
wetland landscape may be in a topographic 
position where hydric tolerant vegetation can 
survive, but the vegetation may not actually 
prefer the wetland conditions. For example, it 
is widely known in the landscape/horticulture 
industry that in a controlled competition 
situation where humans manage the landscape, 
Bald Cypress can be found thriving in upland 
urban savannas, even in parking lots, growing 
at year I y rates greater than growth rates found 
in the suppressing environmental conditions of 
a lowland. 

As suggested, both models indicate that the 
vegetation studied in this investigation will 
actually tolerate or prefer higher topographic 
positions but that the components of the upland 
soil may be different. A plot of the two 
predicted productivity scores (Figure 4) 
indicates that the two preferences are indeed 
different; when the soil condition is ideal for 
one vegetation type, the other vegetation type 
will not prefer the soil. Notice the plot in 
Figure 4 places the soils in relative proximity 
to the two axis and not in the center or upper 
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left corner of the plot, locations that would 
indicate overlap in preference. Despite the 
evidence supplied by statistical results, there 
may be a methodological flaw in the collection 
of the data as applied to this investigation. The 
procedures described by Burley and colleagues 
were intended for studying the prediction of 
plant growth on soils from data collected where 
each vegetation type was grown on each soil 
type with competition strictly controlled. In 
the case of Polk County, Florida, not all 
vegetation types may have been grown on all 
soils types in a controlled competition 
environment. Instead the growth of some 
vegetation types may have been recorded under 
plant competition conditions. The investigator 
suspects that the lowland vegetation equation 
may have been partially influenced by the soil 
preference of lowland plants under competition 
stress from upland vegetation and that the 
equation does not represent the actual 
preference of lowland vegetation when 
competition is controlled. Despite the 
limitations of the study, the equations may be 
helpful to the recla-mation/restoration 
specialist. For example, when reconstructing 
wetlands in a post-mining landscape, an 
equation derived from wetland tolerant 
vegetation under competition forces may 
actual I y be advantageous for wetland en-
vironments. In addition, restraining upland 



vegetation invasions may be beneficial in 
limiting the need for extensive vegetation 
management measures to control upland . 
vegetation invasions. • 

Comparison To Past Work 

In the past, the work of Burley and 
associates suggests that the soil reconstruction 
requirements for both noospheric and 
biospheric upland vegetation types in the Upper 
Midwest and the Northern Great Plains may be 
similar. In other words, 'What is preferred by 
native vegetation types is also preferred by 
introduced and cultivated vegetation, posing a 
dilemma for reclamation specialists.' This 
'Pan-Preference' may not be as distinct in the 
Florida study. While plant ecologists have 
indicated that under competition·, stress, and 
disturbance regimes, vegetation types may 
ordinate themselves into occupying different 
survival zones governed by such factors as fire, 
severe drought, high pH, and extreme cold; it 
seems that all of the plant types (both native 
and non-native) previously studied by Burley 
have nearly identical soil preference, the 'Co-
preference Theory,' as predicted by previous 
reclamation equations. This means that in the 

· establishment of native vegetation types on 
lands being reclaimed, reconstructed soils 
suitable for native plants can be developed by 
employing the productivity equations to predict 
native plant development but that these 
productive reconstructed soils may also be 
suitable for non-native colonization. In 
contrast, the study reported in this paper 
indicates that although a reclamation specialist 
might employ the equations presented in this 
investigation to create neo-sols that generate a 
greater yearly plant biomass level than pre-
disturbance soils (a goal often employed by 
post-mining reclamation specialists), one 
should not necessarily build these highly 
productive soils when creating post-mining 
landscapes for native lowland vegetation. For 
the Florida case study, reconstructing 
productive soils may be encouraging non-native 
vegetation at the expense of native vegetation. 
This premise is not new, but this study presents 
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quantitative evidence to support the construct. 
Conversely, a reclamation/ restoration 
specialist who does not develop productive 
post-disturbance soils, may be risking 
development of native vegetation stands which 
are unhealthy or slow to develop (traditionally 
slow growing vegetation has been a sign of 
poor reclamation success and is not favored in 
current reclamation regulations where quick 
post-mining plant growth is preferred). Should 
the reclamation/restoration specialist develop 
neo-sols that are highly productive but may 
lead to the exclusion of some vegetation types? 
or should the reclamation/restoration specialist 
create less productive soils that may 
accommodate a variety of vegetation types? 

Conclusion 

Before applying these equations for 
establishing native vegetation associations, 
investigators may wish to expand the work of 
Burley and colleagues to study vegetation 
productivity scores with various native 
vegetation types. across a wide variety of 
landscape environments. In addition, 
restoration specialists may have to carefully 
control competition on highly productive neo-
sols to prevent non-native plant invasions and 
allow native vegetation to become dominant. 
The work of Burley and colleagues may offer 
some empirical soil preference insight into why 
competition control is necessary and how to 
control competition. 

The landscape restoration specialist should be 
cognizant of neo-sol vegetation productivity 
equations, their potential, the methodology 
employed to create the equations, and their 
limitations. Since the data base for creating the 
equations already exists for many regions of 
the United States of America and since there is 
an increased effort to restore landscapes with 
disturbed soils, many more neo-sol equations 
may be developed. This article has presented 
the current neo-sol equation literature, 
contemporary theoretical neo-sol equation 
issues, and latest equations developed by 
investigators. 



ENDNOTFS 

1. During the fall of 1991 while working 
upon a Ph.D. course of study and enrolled in a 
course at the University of Michigan 
addressing "Agroecosystems" taught by Dr. 
J.H. Vandermeer (an agroecosystem ecologist), 
Burley wrote a paper describing the results of a 
small study in which he conducted a Jackknife 
estimate of Beta coefficients for Equation 2 and 
conducted a Bootstrap estimate of Beta 
coefficients for Equation 2. In the Jackknife 
study, he removed one observation case and 
then calculated the Beta coefficients for the 
regressors. He then replaced the observation 
case to the data set and selected another case 
for removal (n= 12). The cases removed in the 

study were case numbers 1, 4, 5, 9, 10, 11, 
13, 19, 24, 31, 44, and 54. Table 6 depicts the 
variation in the coefficients. The standard 
deviations of each coefficient were rather small 
ranging from 0.019 to 0.207. 

In the Bootstrap study, he randomly 
selected 200 observation cases from an original 
set of 80 cases and computed the Beta 
coefficients. He then randomly selected 
another 200 observations to repeat the 
computations. This process was conducted five 
times (n=5). Table 7 depicts the variation in 
the coefficients. Again, the standard deviations 
of the coefficients were relatively small ranging 
from 0.028 to 0.118. 

Table 6. This table presents the descriptive statistics for the Jackknife study conducted by Burley. 

BO 
Constant 

Bl 
HC 

Beta Coefficient 
B2 B3 B4 B5 B6 
SLTP ECFR ECCL ECBD OMFR 

Description 
N of Cases 
Minimum 
Maximum 
Mean 
Standard Dev 

12 
0.873 
0.932 
0.896 
0.019 

12 12 12 12 12 12 
-1.484 -1.241 -2.387 -0.678 -1.325 2.632 
-1.307 -1.134 -2.057 -0.519 -1.042 3.422 
-1.430 -1.155 -2.287 -0.591 -1.242 2.799 
0.042 0.029 0.079 0.035 0.097 0.207 

Where 
BO = Beta Intercept Constant 
Bn = Beta Slope Constant 
HC = Hydraulic Conductivity 
SL= % Slope 
TP = Topographic Position 
BD = Moist Bulk Density 
FR = % Rock Fragments 
EC = Electrical Conductivity 
CL= % Clay 
OM = % Organic Matter 
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Table 7. This table presents the descriptive statistics for the Bootstrap study conducted by Burley. 

Beta Coefficient 
BO Bl 

HC 
B2 B3 B4 BS B6 

Constant SLTP ECFR ECCL ECBD OMFR 
Description 
N of Cases 
Minimum 
Maximum 
Mean 
Standard Dev 

5 
0.873 
0.932 
0.896 
0.019 

5 5 5 5 5 5 
-1.552 -1.148 -2.337 -0.613 -1.397 2.641 
-1.361 -1.064 -2.270 -0.521 -1.283 2.925 
-1.450 -1.110 -2.292 -0.574 -1.348 2.783 
0.073 0.040 0.028 0.041 0.045 0.118 

Where 
BO = Beta Intercept Constant 
Bn = Beta Slope Constant 
HC = Hydraulic Conductivity 
SL=% Slope 
TP = Topographic Position 
BD = Moist Bulk Density 
FR = % Rock Fragments 
EC = Electrical Conductivity 
CL=% Clay 
OM = % Organic Matter 

2. The Central Florida study was 
initiated by A. Bauer as an exam question 
in a PhD candidacy written examination for 
Burley, conducted in January 1992. The 
Polk County results reported in this article 
were initially generated during this exam. 
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